Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(8): 1386-1392, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35179379

RESUMO

We have used velocity map ion imaging to measure the angular anisotropy of the NO (A) products from the photodissociation of the N2-NO complex. Our experiment ranged from 108 to 758 cm-1 above the threshold energy to form NO (A) + N2 (X) products, and these measurements reveal, for the first time, a strong angular anisotropy from photodissociation. At 108 cm-1 above the photodissociation threshold, we observed NO (A) photoproducts recoil preferentially perpendicular to the laser polarization axis with an average anisotropy parameter, ß = -0.25; however, as the available energy was increased, the anisotropy increased, and at 758 cm-1 above the threshold energy, we found an average ß = +0.28. The observed changes in the angular anisotropy of the NO (A) photoproduct are qualitatively similar to those observed for the photodissociation of the Ar-NO complex and likely result from changes in the region of the excited state potential energy surface accessed during the electronic excitation. At the lowest available energy, we also noted a large contribution from hotband excitation; however, this contribution decreased as the available energy increased. The outsized contribution at the lowest available energy may result from hotbands having better Franck-Condon overlap with the excited electronic state near threshold. Finally, we contrast the experimental center of mass translational energy distribution with a statistical energy distribution determined from phase space theory. The experimental and statistical distributions show pronounced disagreement, particularly at low kinetic energies, with the experimental one showing less dissociation resulting in high rotational levels of the fragments.

2.
Angew Chem Int Ed Engl ; 59(6): 2380-2384, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31657097

RESUMO

Narrow proton signals, high sensitivity, and efficient coherence transfers provided by fast magic-angle spinning at high magnetic fields make automated projection spectroscopy feasible for the solid-state NMR analysis of proteins. We present the first ultrahigh dimensional implementation of this approach, where 5D peak lists are reconstructed from a number of 2D projections for protein samples of different molecular sizes and aggregation states, which show limited dispersion of chemical shifts or inhomogeneous broadenings. The resulting datasets are particularly suitable to automated analysis and yield rapid and unbiased assignments of backbone resonances.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Automação , Marcação por Isótopo , Superóxido Dismutase/química , Microglobulina beta-2/química
3.
Biochemistry ; 56(40): 5318-5327, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28915027

RESUMO

In vitro studies of protein structure, function, and dynamics typically preclude the complex range of molecular interactions found in living tissues. In vivo studies elucidate these complex relationships, yet they are typically incompatible with the extensive and controlled biophysical experiments available in vitro. We present an alternative approach by extracting membranes from eukaryotic tissues to produce native bicelles to capture the rich and complex molecular environment of in vivo studies while retaining the advantages of in vitro experiments. Native bicelles derived from chicken egg or mouse cerebrum tissues contain a rich composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), lysolipids, cholesterol, ceramides (CM), and sphingomyelin (SM). The bicelles also contain source-specific lipids such as triacylglycerides (TAGs) and sulfatides from egg and brain tissues, respectively. With the influenza hemagglutinin fusion peptide (HAfp) and the C-terminal Src homology domain of lymphocyte-specific protein-tyrosine kinase (lck-cSH2), we show that membrane proteins and membrane associated proteins reconstituted in native bicelles produce high-resolution NMR data and probe native protein-lipid interactions.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Micelas , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica
4.
J Am Chem Soc ; 139(13): 4715-4723, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28287254

RESUMO

Hybrid NMR (hdNMR) is a powerful new tool that combines the strengths of solution- and solid-state NMR to measure dipolar, chemical shift, and quadrupolar tensors in aqueous solution. We introduce the theory of hdNMR and partially randomly oriented (PRO) crystalline hydrogel samples. PRO samples produce randomly oriented spectra with characteristic Pake patterns from the solid state, yet they maintain the high-resolution dispersion of solution NMR experiments. With new pulse sequences, we show how hdNMR can be used to measure with high precision the 1Hα-13Cα dipolar tensor and carboxylate chemical shift anisotropy tensor of aspartate. These measurements contain detailed information on the distribution of electron density, interatomic distances, and the orientation dependence of molecular motion.

5.
J Am Chem Soc ; 137(37): 11932-4, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26348133

RESUMO

Residual Dipolar Couplings (RDCs) are integral to the refinement of membrane protein structures by NMR since they accurately define the orientation of helices and other structural units. Only a small set of liquid crystals used for RDC measurements are compatible with the detergents needed in membrane protein studies. The available detergent-compatible liquid crystals are negatively charged, thus offering effectively only one of five orthogonal components of the alignment Saupe matrix. In this communication, we present a robust liquid crystalline medium that is positively charged, pinacyanol acetate (PNA), for the determination of orthogonal sets of RDCs in membrane proteins. This new medium promises to enhance the accuracy of membrane protein structures and the measurement of dynamics based on RDCs.


Assuntos
Cristais Líquidos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Carbocianinas/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína
6.
J Biol Chem ; 290(1): 228-38, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25398882

RESUMO

The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A/química , Bicamadas Lipídicas/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Sítios de Ligação , Dimiristoilfosfatidilcolina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Éteres Fosfolipídicos/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Termodinâmica
7.
Langmuir ; 30(39): 11723-33, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25203267

RESUMO

Isotropically tumbling discoidal bicelles are a useful biophysical tool for the study of lipids and proteins by NMR, dynamic light scattering, and small-angle X-ray scattering. Isotropically tumbling bicelles present a low-curvature central region, typically enriched with DMPC in the lamellar state, and a highly curved detergent rim, typically composed of DHPC. In this report, we study the impact of the partitioning and induced curvature of a few molecules of a foreign lipid on the bicelle size, structure, and curvature. Previous approaches for studying curvature have focused on macroscopic and bulk properties of membrane curvature. In the approach presented here, we show that the conical shape of the DOPE lipid and the inverted-conical shape of the DPC lipid induce measurable curvature changes in the bicelle size. Bicelles with an average of 1.8 molecules of DOPE have marked increases in the size of bicelles, consistent with negative membrane curvature in the central region of the bicelle. With bicelle curvature models, radii of curvature on the order of -100 Å and below are measured, with a greater degree of curvature observed in the more pliable Lα state above the phase-transition temperature of DMPC. Bicelles with an average of 1.8 molecules of DPC are reduced in size, consistent with positive membrane curvature in the rim, and at higher temperatures, DPC is distributed in the central region to form mixed-micelle structures. We use translational and rotational diffusion measurements by NMR, size-exclusion chromatography, and structural models to quantitate changes in bicelle size, curvature, and lipid dynamics.


Assuntos
Membrana Celular/química , Micelas , Difusão , Isótopos , Modelos Moleculares , Conformação Molecular , Fosfatidiletanolaminas/química , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...