Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 110, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570800

RESUMO

BACKGROUND: Post-stroke cognitive impairment (PSCI) is common. However, the underlying pathophysiology remains largely unknown. Understanding the role of microvascular changes and finding markers that can predict PSCI, could be a first step towards better screening and management of PSCI. Capillary dysfunction is a pathological feature of cerebral small vessel disease and may play a role in the mechanisms underlying PSCI. Extracellular vesicles (EVs) are secreted from cells and may act as disease biomarkers. We aim to investigate the role of capillary dysfunction in PSCI and the associations between EV characteristics and cognitive function one year after acute ischemic stroke (AIS) and transient ischemic attack (TIA). METHODS: The ENIGMA study is a single-centre prospective clinical observational study conducted at Aarhus University Hospital, Denmark. Consecutive patients with AIS and TIA are included and followed for one year with follow-up visits at three and 12 months. An MRI is performed at 24 h and 12 months follow-up. EV characteristics will be characterised from blood samples drawn at 24 h and three months follow-up. Cognitive function is assessed three and 12 months after AIS and TIA using the Repeatable Battery for the Assessment of Neuropsychological Status. DISCUSSION: Using novel imaging and molecular biological techniques the ENIGMA study will provide new knowledge about the vascular contributions to cognitive decline and dementia. TRIAL REGISTRATION: The study is retrospectively registered as an ongoing observational study at ClinicalTrials.gov with the identifier NCT06257823.


Assuntos
Disfunção Cognitiva , Demência , Ataque Isquêmico Transitório , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ataque Isquêmico Transitório/complicações , Estudos Prospectivos , Acidente Vascular Cerebral/psicologia , Disfunção Cognitiva/diagnóstico , Estudos Observacionais como Assunto
2.
J Cereb Blood Flow Metab ; 42(12): 2303-2317, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35999817

RESUMO

Systemic inflammation affects cognitive functions and increases the risk of dementia. This phenomenon is thought to be mediated in part by cytokines that promote neuronal survival, but the continuous exposure to which may lead to neurodegeneration. The effects of systemic inflammation on cerebral blood vessels, and their provision of adequate oxygen to support critical brain parenchymal cell functions, remains unclear. Here, we demonstrate that neurovascular coupling is profoundly disturbed in lipopolysaccharide (LPS) induced systemic inflammation in awake mice. In the 24 hours following LPS injection, the hyperaemic response of pial vessels to functional activation was attenuated and delayed. Concurrently, under steady-state conditions, the capillary network displayed a significant increase in the number of capillaries with blocked blood flow, as well as increased duration of 'capillary stalls'-a phenomenon previously reported in animal models of stroke and Alzheimer's disease pathology. We speculate that vascular changes and impaired oxygen availability may affect brain functions following acute systemic inflammation and contribute to the long-term risk of neurodegenerative changes associated with chronic, systemic inflammation.


Assuntos
Hiperemia , Lipopolissacarídeos , Animais , Camundongos , Microcirculação , Modelos Animais de Doenças , Inflamação/patologia , Capilares , Oxigênio
3.
Cells ; 11(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406640

RESUMO

Post-embedding correlative light and electron microscopy (CLEM) has the advantage of high-precision registration and enables light and electron microscopy imaging of the same slice. However, its broad application has been hampered by the limited available fluorescent proteins (FPs) and a low signal-to-background ratio (SBR). Here, we developed a green photoswitchable FP, mEosEM-E with substantially high on/off contrast in EM samples embedded in Epon resin, which maximally preserves cellular structures but quenches the fluorescence of FPs. Taking advantage of the photoswitching property of mEosEM-E, the autofluorescence background from the resin was significantly reduced by a subtraction-based CLEM (sCLEM) method. Meanwhile, we identified a red fluorescent protein (RFP) mScarlet-H that exhibited higher brightness and SBR in resin than previously reported RFPs. With mEosEM-E and mScarlet-H, dual-colour post-Epon-embedding CLEM images with high SBR and no cross-talk signal were successfully performed to reveal the organization of nucleolar proteins. Moreover, a dissection of the influences of different EM sample preparation steps on the fluorescence preservation for several RFPs provides useful guidance for further probe development.


Assuntos
Corantes , Elétrons , Microscopia Eletrônica
4.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328755

RESUMO

Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE). Blood samples were collected from human participants before and at serial time points after intervention. RIC and BFRRE plasma EVs released early after stimulation improved viability of endothelial cells subjected to oxygen-glucose deprivation. Furthermore, post-RIC EVs accumulated in the ischemic area of a stroke mouse model, and a mean decrease in infarct volume was observed for post-RIC EVs, although not reaching statistical significance. Thus, circulating EVs induced by RIC and BFRRE can mediate protection, but the in vivo and translational effects of conditioned EVs require further experimental verification.


Assuntos
Vesículas Extracelulares , Traumatismo por Reperfusão , Animais , Modelos Animais de Doenças , Células Endoteliais , Humanos , Isquemia , Camundongos
5.
Biomedicines ; 9(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572398

RESUMO

Remote ischemic conditioning (RIC) is a procedure that can attenuate ischemic-reperfusion injury by conducting brief cycles of ischemia and reperfusion in the arm or leg. Extracellular vesicles (EVs) circulating in the bloodstream can release their content into recipient cells to confer protective function on ischemia-reperfusion injured (IRI) organs. Skeletal muscle cells are potential candidates to release EVs as a protective signal during RIC. In this study, we used C2C12 cells as a model system and performed cyclic hypoxia-reoxygenation (HR) to mimic RIC. EVs were collected and subjected to small RNA profiling and proteomics. HR induced a distinct shift in the miRNA profile and protein content in EVs. HR EV treatment restored cell viability, dampened inflammation, and enhanced tube formation in in vitro assays. In vivo, HR EVs showed increased accumulation in the ischemic brain compared to EVs secreted from normoxic culture (N EVs) in a mouse undergoing transient middle cerebral artery occlusion (tMCAO). We conclude that HR conditioning changes the miRNA and protein profile in EVs released by C2C12 cells and enhances the protective signal in the EVs to recipient cells in vitro.

6.
Basic Res Cardiol ; 116(1): 16, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689033

RESUMO

BACKGROUND: Remote ischemic conditioning (RIC) by brief periods of limb ischemia and reperfusion protects against ischemia-reperfusion injury. We studied the cardioprotective role of extracellular vesicles (EV)s released into the circulation after RIC and EV accumulation in injured myocardium. METHODS: We used plasma from healthy human volunteers before and after RIC (pre-PLA and post-PLA) to evaluate the transferability of RIC. Pre- and post-RIC plasma samples were separated into an EV enriched fraction (pre-EV + and post-EV +) and an EV poor fraction (pre-EV- and post-EV-) by size exclusion chromatography. Small non-coding RNAs from pre-EV + and post-EV + were purified and profiled by NanoString Technology. Infarct size was compared in Sprague-Dawley rat hearts perfused with isolated plasma and fractions in a Langendorff model. In addition, fluorescently labeled EVs were used to assess homing in an in vivo rat model. (ClinicalTrials.gov, number: NCT03380663) RESULTS: Post-PLA reduced infarct size by 15% points compared with Pre-PLA (55 ± 4% (n = 7) vs 70 ± 6% (n = 8), p = 0.03). Post-EV + reduced infarct size by 16% points compared with pre-EV + (53 ± 15% (n = 13) vs 68 ± 12% (n = 14), p = 0.03). Post-EV- did not affect infarct size compared to pre-EV- (64 ± 3% (n = 15) and 68 ± 10% (n = 16), p > 0.99). Three miRNAs (miR-16-5p, miR-144-3p and miR-451a) that target the mTOR pathway were significantly up-regulated in the post-EV + group. Labelled EVs accumulated more intensely in the infarct area than in sham hearts. CONCLUSION: Cardioprotection by RIC can be mediated by circulating EVs that accumulate in injured myocardium. The underlying mechanism involves modulation of EV miRNA that may promote cell survival during reperfusion.


Assuntos
Braço/irrigação sanguínea , Vesículas Extracelulares/transplante , Precondicionamento Isquêmico , MicroRNAs/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Preparação de Coração Isolado , Masculino , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional
7.
Biomedicines ; 8(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731351

RESUMO

There is a large unmet need for fast and reliable diagnostics in several diseases. One such disease is stroke, where the efficacy of modern reperfusion therapies is highly time-dependent. Diagnosis of stroke and treatment initiation should be performed as soon as possible, and preferably before arrival at the stroke center. In recent years, several potential blood biomarkers for stroke have been evaluated, but without success. In this review, we will go into detail on the possibility of utilizing extracellular vesicles (EVs) released into the blood as novel biomarkers for stroke diagnostics. EVs are known to reflect the immediate state of the secreting cells and to be able to cross the blood-brain barrier, thus making them attractive as diagnostic biomarkers of brain diseases. Indeed, several studies have reported EV markers that enable differentiation between stroke patients and controls and, to a lesser extent, the ability to correctly classify the different stroke types. Most of the studies rely on the use of sophisticated and time-consuming methods to quantify specific subpopulations of the nanosized EVs. As these methods cannot be easily implemented in a rapid point of care (POC) test, technical developments followed by prospective clinical studies are needed.

8.
Sci Rep ; 10(1): 5835, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245988

RESUMO

Ischemic exercise conducted as low-load blood flow restricted resistance exercise (BFRE) can lead to muscle remodelling and promote muscle growth, possibly through activation of muscle precursor cells. Cell activation can be triggered by blood borne extracellular vesicles (EVs) as these nano-sized particles are involved in long distance signalling. In this study, EVs isolated from plasma of healthy human subjects performing a single bout of BFRE were investigated for their change in EV surface profiles and miRNA cargos as well as their impact on skeletal muscle precursor cell proliferation. We found that after BFRE, five EV surface markers and 12 miRNAs were significantly altered. Furthermore, target prediction and functional enrichment analysis of the miRNAs revealed several target genes that are associated to biological pathways involved in skeletal muscle protein turnover. Interestingly, EVs from BFRE plasma increased the proliferation of muscle precursor cells. In addition, alterations in surface markers and miRNAs indicated that the combination of exercise and ischemic conditioning during BFRE can stimulate blood cells to release EVs. These results support that BFRE promotes EV release to engage in muscle remodelling and/or growth processes.


Assuntos
Vesículas Extracelulares/fisiologia , MicroRNAs/metabolismo , Músculo Esquelético/irrigação sanguínea , Treinamento Resistido , Western Blotting , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , MicroRNAs/genética , Microscopia Eletrônica de Transmissão , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Adulto Jovem
9.
PLoS One ; 13(4): e0196161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698450

RESUMO

Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue. Our investigation is based on estimates of mean diffusivity (MD) and mean (of the) kurtosis tensor (MKT) obtained using recent fast DKI methods requiring only 19 images. At 24 hours post stroke, rat brains were fixed and prepared. The infarct was clearly visible in both MD and MKT maps. The MKT lesion volume was roughly 31% larger than the MD lesion volume. Subsequent histological analysis (hematoxylin) revealed similar lesion volumes to MD. Our study shows that structural components underlying the MD/MKT mismatch can be investigated in fixed tissue and therefore allows a more direct comparison between lesion volumes from MRI and histology. Additionally, the larger MKT infarct lesion indicates that MKT do provide increased sensitivity to microstructural changes in the lesion area compared to MD.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Animais , Encéfalo/patologia , Encéfalo/fisiologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Masculino , Ratos , Ratos Sprague-Dawley
10.
Microcirculation ; 24(6)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28236639

RESUMO

OBJECTIVE: Pericytes surround the endothelial cells of the microvasculature where they serve as active participants in crucial vascular functions such as angiogenesis, stability, and permeability. However, pericyte loss or dysfunction has been described in a number of pathologies. Targeting pericytes could therefore prove instrumental in the further development of vascular therapeutics. METHODS: To target the pericyte, a proteomic-based approach using antibody phage display was conducted. We present a novel single-cell selection strategy, with a modified selection step to drive the selection of antibodies toward relevant pericyte epitopes. RESULTS: Characterization of the selected antibodies revealed two antibodies with binding specificity for pericytes. The cognate antigen of one of the antibodies was identified as pericyte-expressed fibronectin. This antibody was shown to be a potent inhibitor of pericyte migration and to induce a pro-angiogenic response when included in a pericyte-endothelial cell co-culture angiogenesis assay. CONCLUSIONS: The selection method provides an efficient platform for the selection of functional antibodies which target pericytes. We obtain an antibody that interacts with a fibronectin epitope important for pericyte mobility and functionality. Targeting of this epitope in pathologies where pericytes are implicated could potentially be of therapeutic benefit.


Assuntos
Anticorpos/farmacologia , Pericitos/efeitos dos fármacos , Proteômica/métodos , Anticorpos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Técnicas de Cocultura , Fibronectinas/imunologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Análise de Célula Única
11.
Acta Neuropsychiatr ; 29(5): 309-314, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27938419

RESUMO

OBJECTIVE: Prenatal exposure to valproic acid (VPA) enhances the risk for later development of autism spectrum disorders (ASD). An altered gamma-aminobutyric acid (GABA) system may be a key factor in ASD. Here we investigated possible changes in the GABA system in rats exposed to a low dose of prenatal VPA. METHOD: We performed autoradiography with [3H]muscimol, (a GABAA receptor agonist), and [11C]Ro15-4513 (a partial agonist of the GABAA α1+5 receptor subtypes), in brain sections containing amygdala, thalamus and hippocampus of rats treated prenatally with 20 mg/kg VPA or saline from the 12th day of gestation. Result Prenatal VPA significantly increased [11C]Ro15-4513 binding in the left amygdala compared with controls (p<0.05). This difference was not observed in the hippocampus, thalamus or right amygdala. No differences were observed in [3H]muscimol binding. CONCLUSION: We observed an asymmetric increase in GABAA receptor binding. Disturbances in the GABAA receptor system have also been detected in human autism with [11C]Ro15-4513.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , GABAérgicos/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptores de GABA-A/metabolismo , Ácido Valproico/administração & dosagem , Animais , Transtorno do Espectro Autista/metabolismo , Autorradiografia , Azidas/farmacocinética , Benzodiazepinas/farmacocinética , Radioisótopos de Carbono , Modelos Animais de Doenças , Feminino , Agonistas de Receptores de GABA-A/farmacocinética , Masculino , Muscimol/farmacocinética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos
12.
Free Radic Biol Med ; 89: 786-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26472192

RESUMO

Numerous cellular functions rely on an active proteasome allowing degradation of damaged or misfolded proteins. Therefore changes in the proteasomal activity have important physiological consequences. During oxidative stress the production of free radicals can result in the formation of 4-hydroxynonenal (HNE) following lipid peroxidiation. The HNE moiety is highly reactive and via a nucleophilic attack readily forms covalent links to cysteine, histidine and lysine side chains. However, as the chemical properties of these amino acids differ, so does the kinetics of the reactions. While covalent linkage through Michael addition is well established, reversible and unstable associations have only been indicated in a few cases. In the present study we have identified an unstable HNE adduct on the α7 subunit of the 20S proteasome using phage display of recombinant antibodies. This recombinant antibody fragment recognized HNE modified proteasomes in vitro and showed that this epitope was easily HNE modified, yet unstable, and influenced by experimental procedures. Hence unstable HNE-adducts could be overlooked as a regulatory mechanism of proteasomal activity and a participating factor in the decreased proteasomal activity associated with oxidative stress.


Assuntos
Região Variável de Imunoglobulina/metabolismo , Estresse Oxidativo/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Aldeídos/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Proteínas Recombinantes/metabolismo
13.
Behav Pharmacol ; 26(8 Spec No): 733-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26110222

RESUMO

The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in the three-chamber test. Fmr1 KO mice spent more time with stranger mice compared with the WT. However, after a correction for hyperactivity, their apparent increase in sociability became identical to that of the WT. Furthermore, the Fmr1 KO mice could not differentiate between a familiar or a novel mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity coexists in ASD patients.


Assuntos
Ansiedade/metabolismo , Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipercinese/metabolismo , Transtornos do Comportamento Social/metabolismo , Animais , Ansiedade/genética , Transtorno do Espectro Autista/genética , Comportamento Animal/fisiologia , Monoaminas Biogênicas/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Hipercinese/genética , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Comportamento Social , Transtornos do Comportamento Social/genética
14.
Diabetologia ; 58(4): 666-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512003

RESUMO

Diabetic neuropathy is associated with disturbances in endoneurial metabolism and microvascular morphology, but the roles of these factors in the aetiopathogenesis of diabetic neuropathy remain unclear. Changes in endoneurial capillary morphology and vascular reactivity apparently predate the development of diabetic neuropathy in humans, and in manifest neuropathy, reductions in nerve conduction velocity correlate with the level of endoneurial hypoxia. The idea that microvascular changes cause diabetic neuropathy is contradicted, however, by reports of elevated endoneurial blood flow in early experimental diabetes, and of unaffected blood flow when early histological signs of neuropathy first develop in humans. We recently showed that disturbances in capillary flow patterns, so-called capillary dysfunction, can reduce the amount of oxygen and glucose that can be extracted by the tissue for a given blood flow. In fact, tissue blood flow must be adjusted to ensure sufficient oxygen extraction as capillary dysfunction becomes more severe, thereby changing the normal relationship between tissue oxygenation and blood flow. This review examines the evidence of capillary dysfunction in diabetic neuropathy, and whether the observed relation between endoneurial blood flow and nerve function is consistent with increasingly disturbed capillary flow patterns. The analysis suggests testable relations between capillary dysfunction, tissue hypoxia, aldose reductase activity, oxidative stress, tissue inflammation and glucose clearance from blood. We discuss the implications of these predictions in relation to the prevention and management of diabetic complications in type 1 and type 2 diabetes, and suggest ways of testing these hypotheses in experimental and clinical settings.


Assuntos
Glicemia/metabolismo , Capilares/fisiopatologia , Neuropatias Diabéticas/sangue , Microcirculação , Consumo de Oxigênio , Oxigênio/sangue , Nervos Periféricos/irrigação sanguínea , Nervos Periféricos/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Hipóxia Celular , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/prevenção & controle , Humanos , Fluxo Sanguíneo Regional
15.
J Cereb Blood Flow Metab ; 34(10): 1585-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25052556

RESUMO

Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of 'classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Encéfalo/irrigação sanguínea , Capilares/fisiopatologia , Circulação Cerebrovascular , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas/complicações , Capilares/metabolismo , Glucose/metabolismo , Hemodinâmica , Humanos , Oxigênio/metabolismo , Pericitos/metabolismo , Pericitos/patologia
17.
Cancer Res ; 73(18): 5618-24, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23764543

RESUMO

Antiangiogenic therapies are being pursued as a means of starving tumors of their energy supply. Although numerous studies show that such therapies render tumors hypoxic, just as many studies have, surprisingly, shown improved tumor oxygenation. These contradicting findings challenge both the original rationale for antiangiogenic therapy and our understanding of the physiology of tissue oxygenation. The flow-diffusion equation, which describes the relation between blood flow and the extraction of freely diffusible molecules in tissue, was recently extended to take the heterogeneity of capillary transit times (CTH) into account. CTH is likely to be high in the chaotic microvasculature of a tumor, increasing the effective shunting of blood through its capillary bed. We review the properties of the extended flow-diffusion equation in tumor tissue. Elevated CTH reduces the extraction of oxygen, glucose, and cytotoxic molecules. The extent to which their net extraction is improved by antiangiogenic therapy, in turn, depends on the extent to which CTH is normalized by the treatment. The extraction of oxygen and glucose are affected to different extents by elevated CTH, and the degree of aerobic glycolysis-known as the Warburg effect-is thus predicted to represent an adaptation to the CTH of the local microvasculature.


Assuntos
Glicólise , Hipóxia , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Oxigênio/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Fluxo Sanguíneo Regional
18.
Neurobiol Aging ; 34(4): 1018-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23084084

RESUMO

It is widely accepted that hypoperfusion and changes in capillary morphology are involved in the etiopathogenesis of Alzheimer's disease (AD). This is difficult to reconcile with the hyperperfusion observed in young high-risk subjects. Differences in the way cerebral blood flow (CBF) is coupled with the local metabolic needs during different phases of the disease can explain this apparent paradox. This review describes this coupling in terms of a model of cerebral oxygen availability that takes into consideration the heterogeneity of capillary blood flow patterns. The model predicts that moderate increases in heterogeneity requires elevated CBF in order to maintain adequate oxygenation. However, with progressive increases in heterogeneity, the resulting low tissue oxygen tension will require a suppression of CBF in order to maintain tissue metabolism. The observed biphasic nature of CBF responses in preclinical AD and AD is therefore consistent with progressive disturbances of capillary flow patterns. Salient features of the model are discussed in the context of AD pathology along with potential sources of increased capillary flow heterogeneity.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Capilares/fisiopatologia , Circulação Cerebrovascular , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/fisiopatologia , Velocidade do Fluxo Sanguíneo , Humanos , Modelos Neurológicos
19.
Exp Gerontol ; 45(10): 779-87, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20600781

RESUMO

The purpose of this study was to evaluate the relevance of long-term endothelial cell culture as a model system of vascular ageing. Micro- and macrovascular endothelial cells were serially passaged until replicative senescence and their ability to form tube-like structures when cultured on Matrigel was assessed throughout their lifespan. For both cell types low passage cultures adopted a homogeneous cobblestone morphology, while senescent cultures were extremely heterogeneous. Furthermore, both cell types showed a reduction in tube formation ability with in vitro ageing, which is in accordance with the reduction in angiogenic potential observed with ageing in vivo. Examination of senescence associated ß-galactosidase activity revealed an increased activity in cells forming tubes as compared to cells cultured on plastic, which could be attributed to an increased lysosomal content of cells undergoing tube formation. As this increased senescence associated ß-galactosidase activity was unrelated to the replicative age of the cells, senescence associated ß-galactosidase activity may not be a relevant senescence marker for differentiating endothelial cells. The age-related reduction in tube formation ability suggested that long-term culture of endothelial cells may be a valid model system of vascular ageing, which makes it an ideal platform for high throughput screening of compounds influencing angiogenesis.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Células Endoteliais/citologia , Microvasos/citologia , Microvasos/fisiologia , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Dano ao DNA/fisiologia , Derme/irrigação sanguínea , Humanos , Lisossomos/metabolismo , Modelos Biológicos , beta-Galactosidase/metabolismo
20.
Exp Neurol ; 225(1): 114-22, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20570675

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal-recessively inherited disorder of gamma-aminobutyrate (GABA) catabolism characterized by ataxia and epilepsy. Since SSADH is responsible for GABA break-down downstream of GABA transaminase, patients manifest high extracellular levels of GABA, as well as the GABA(B) receptor (GABA(B)R) agonist gamma-hydroxybutyrate (GHB). SSADH knockout (KO) mice display absence seizures, which progress into lethal tonic-clonic seizures at around 3weeks of age. It is hypothesized that desensitization of GABA(B)Rs plays an important role in the disease, although detailed studies of pre- and postsynaptic GABA(B)Rs are not available. We performed patch-clamp recordings from layer 2/3 pyramidal neurons in neocortical brain slices of wild-type (WT) and SSADH KO mice. Electrical stimulation of GABAergic fibers during wash in of the GABA(B)R agonist baclofen revealed no difference in presynaptic GABA(B)R mediated inhibition of GABA release between WT and SSADH KO mice. In contrast, a significant decrease in postsynaptic baclofen-induced potassium currents was seen in SSADH KO mice. This reduction was unlikely to be caused by accumulation of potassium, GABA or GHB in the brain slices, or an altered expression of regulators of G-protein signaling (RGS) proteins. Finally, adenosine-induced potassium currents were also reduced in SSADH KO mice, which could suggest heterologous desensitization of the G-protein dependent effectors, leading to a reduction in G-protein coupled inwardly rectifying potassium (GIRK) channel responses. Our findings indicate that high GABA and GHB levels desensitize postsynaptic, but not certain presynaptic, GABA(B)Rs, promoting a decrease in GIRK channel function. These changes could contribute to the development of seizures in SSADH KO mice and potentially also in affected patients.


Assuntos
Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/enzimologia , Receptores de GABA-B/fisiologia , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Transmissão Sináptica/genética , Adenosina/farmacologia , Animais , Baclofeno/farmacologia , Modelos Animais de Doenças , Antagonistas GABAérgicos/farmacologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-B/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...