Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Monatsh Chem ; 154(12): 1391-1404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020487

RESUMO

A series of substituted imidazoquinolines, a structurally related chemotype to pyrazoloquinolinones, a well-known class of GABAA ligands, was prepared via two synthetic procedures and the efficiency of these procedures were compared. One method relies on classical heterocyclic synthesis, the other one aims at late-stage decoration of a truncated scaffold via direct C-H functionalization. A pharmacological evaluation disclosed that one of the synthesized derivatives showed interesting activity on a α1ß3 containing receptor subtype. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-022-02988-8.

2.
Anal Chim Acta ; 1278: 341718, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709429

RESUMO

Phytosiderophores (PS) are root exudates released by grass species (Poaceae) that play a pivotal role in iron (Fe) plant nutrition. A direct determination of PS in biological samples is of paramount importance in understanding micronutrient acquisition mediated by PS. To date, eight plant-born PS have been identified; however, no analytical procedure is currently available to quantify all eight PS simultaneously with high analytical confidence. With access to the full set of PS standards for the first time, we report comprehensive methods to both fully characterize (IM-QTOFMS) and quantify (LC-ESI-MS/MS) all eight naturally occurring PS belonging to the mugineic acid family. The quantitative method was fully validated, yielding linear results for all eight analytes, and no unwanted interferences with soil and plant matrices were observed. LOD and LOQ values determined for each PS were below 11 and 35 nmol L-1, respectively. The method's precision under reproducibility conditions (intra- and inter-day) of measurement was less than 2.5% RSD for all analytes. Additionally, all PS were annotated with high-resolution mass spectrometric fragment spectra and further characterized via drift tube ion mobility-mass spectrometry. The collision cross-sections obtained for primary ion species yielded a valuable database for future research focused on in-depth PS studies. The new quantitative method was applied to analyse root exudates from Fe-controlled and deficient barley, oat, rye, and sorghum plants. All eight PS, including mugineic acid (MA), 3"-hydroxymugineic acid (HMA), 3"-epi-hydroxymugineic acid (epi-HMA), hydroxyavenic acid (HAVA), deoxymugineic acid (DMA), 3"-hydroxydeoxymugineic acid (HDMA), 3"-epi-hydroxydeoxymugineic acid (epi-HDMA) and avenic acid (AVA) were for the first time successfully identified and quantified in root exudates of various graminaceous plants using a single analytical procedure. These newly developed methods can be applied to studies aimed at improving crop yield and micronutrient grain content for food consumption via plant-based biofortification.


Assuntos
Poaceae , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Grão Comestível , Micronutrientes
3.
J Labelled Comp Radiopharm ; 66(13): 428-434, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755147

RESUMO

We, herein, report the synthesis of 13 C2 -labeled natural products from the mugineic acid and avenic acid family. These phytosiderophores ("plant iron carriers") are built up from non-proteinogenic amino acids and play a key role in micronutrient uptake in gramineous plants. In this work, two central building blocks are prepared from labeled starting materials (13 C2 -bromoacetic acid, 13 C2 -glycine) and further employed in our recently reported divergent, branched synthetic strategy delivering eight isotopically labeled phytosiderophores. The required labeled building blocks (13 C2 -l-allylglycine and a related hydroxylated derivative) were prepared via enantioselective phase-transfer catalysis and enantio- and diastereoselective aldol condensation with a chiral auxiliary, respectively, both potentially valuable themselves for other synthetic routes toward labeled (natural) products.


Assuntos
Ferro , Sideróforos , Humanos , Sideróforos/química , Sideróforos/metabolismo , Ferro/química , Ferro/metabolismo , Transporte Biológico , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo
4.
Chem Commun (Camb) ; 55(81): 12144-12147, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31536076

RESUMO

The development of an N-heterocyclic carbene (NHC) catalysed intercepted dehomologation of aldoses is reported. The unique selectivity of NHCs for aldehydes is exploited in the complex context of reducing sugars. Examples of strong substrate governance for either intercepted dehomologation or a subsequent redox-lactonisation were identified and mechanistically understood. More importantly, it was shown that catalyst design allowed the tuning of the selectivity of the reaction with structurally unbiased starting materials towards either of the two scenarios.

5.
J Org Chem ; 83(5): 2647-2659, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29369620

RESUMO

The acyloxyallylation of unprotected aldoses was first demonstrated more than a decade ago as a potentially elegant two-carbon homologation of reducing sugars (upon ozonolysis); however, its application in real case syntheses remained scarce. Following up on such a successful showcase and to answer several pending questions about this attractive transformation, we engaged in an in depth methodological reinvestigation. The epimeric tetroses l-erythrose and d-threose in unprotected and protected form were successfully applied to the indium and also zinc-mediated acyloxyallylation, with the latter being a first for an unprotected sugar. The investigation largely benefited from the choice of these more exotic starting materials as it allowed unambiguous identification/quantification of the hexose-products which are available as authentic reference materials. The observed diastereoselectivities indicate a strong substrate control (stereochemistry at O2), and the influence of the reagent's structure on the selectivity was investigated in great detail. A strong facial diastereodivergence between related protected and unprotected structures was demonstrated and an unexpected, pronounced principle difference in performance between indium and zinc was revealed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...