Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(36): 14981-14993, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37661913

RESUMO

We report a simple process, based on the combination of sol-gel deposition and nano-templating with polycarbonate membranes, for the synthesis of 1D to 3D free-standing silica (SiO2) interconnected nanotube (NT) networks. The thickness and porosity of the SiO2 nanotube walls can be, respectively, controlled by adjusting the ethanol amount in the sol-gel reaction mixture and by the addition or not of a porogen agent during the synthesis. Internal functionalization of 1D and 3D porous and non-porous SiO2 NTs by Au nanoparticles (NPs) was then performed using electroless deposition leading to particle sizes ranging from 15 to 20 nm. Characterization of all these systems by SEM-EDX, TEM, ICP and XPS clearly demonstrated the impact of the porosity of SiO2 on the amount and localization of Au NPs. Selective functionalization of the inner or the inner + outer surfaces of SiO2 NTs was achieved by keeping or freeing the SiO2 NTs from the template prior to electroless deposition, respectively. Moreover, UV-visible analysis confirmed plasmon resonance associated with Au NPs in all functionalized systems, paving the way to applications in many fields such as nano-medicine or (photo-)catalysis. In particular, the free-standing interconnected silica-based nanotube systems provide unique features of great interest for use in nanoscale fluidic bioseparation, sensing, and flow (photo)-catalytic chemistry, as demonstrated herein for the photodegradation of methylene blue.

2.
ChemSusChem ; 13(19): 5164-5172, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32725856

RESUMO

2,5-furandicarboxylic acid (FDCA) is one of the most important bio-sourced building blocks and several routes have been reported for its synthesis. FDCA is presumed to be an ideal green alternative to terephthalate, which is one of the predominant monomers in polymer industry. This Minireview concerns the synthesis of FDCA by using various carboxylation reactions and discusses the synthesis of FDCA starting from furoic acid and CO2 and using different catalytic and stoichiometric processes. This process is of high interest, as it avoids the glucose isomerization step and selectivity issues observed during the 5-hydroxymethylfurfural oxidation step of the current alternative route to FDCA. Discussion focuses on the main parameters that govern selectivity and activity in the carboxylation processes. Moreover, various previously described processes, such as the Henkel reaction and enzymatic, homogeneous catalytic, and photoelectrocatalytic processes, are also discussed.

3.
Materials (Basel) ; 11(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772729

RESUMO

Chemisorption of hydrogen on metallic particles is often used to estimate the metal dispersion (D), the metal particle size (d), and the metallic specific surface area (SM), currently assuming a stoichiometry of one hydrogen atom H adsorbed per surface metal atom M. This assumption leads to a large error when estimating D, d, and SM, and a rigorous method is needed to tackle this problem. A model describing the statistics of the metal surface atom and site distribution on perfect cuboctahedron clusters, already developed for Pt, is applied to Pd, Ir, and Rh, using the density functional theory (DFT) calculation of the literature to determine the most favorable adsorption sites for each metal. The model predicts the H/M values for each metal, in the range 0⁻1.08 for Pd, 0⁻2.77 for Ir, and 0⁻2.31 for Rh, depending on the particle size, clearly showing that the hypothesis of H/M = 1 is not always confirmed. A set of equations is then given for precisely calculating D, d, and SM for each metal directly from the H chemisorption results determined experimentally, without any assumption about the H/M stoichiometry. This methodology provides a powerful tool for accurate determination of metal dispersion, metal particle size, and metallic specific surface area from chemisorption experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA