Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 424: 136360, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37207604

RESUMO

The application of rice and pea proteins in food production is limited due to their undesirable processing performance. The objective of this research was to develop a novel rice-pea protein gel using alkali-heat treatment. This gel had a higher solubility, stronger gel strength, better water retention capacity, and denser bilayer network. This is due to the alkali-heat induced modifications for the secondary structures of proteins (i.e., a decrease in the α-helix, and an increase in the ß-sheets) and the interactions between protein molecules. The network structure of gel was more compact by adding 2% and 4% alkali-heat rice protein (AH-RP). This resulted in a stable double-layer network structure of gel. Adding 4% AH-RP significantly improved the hardness and elasticity of gel. This gel will have a good potential use for being the ingredient to produce the functional foods and meat analogs.


Assuntos
Oryza , Proteínas de Ervilha , Manipulação de Alimentos/métodos , Oryza/química , Elasticidade , Dureza , Géis/química
2.
Food Chem ; 410: 135447, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640654

RESUMO

The rheological properties and microstructure of doughs, and the texture properties of whole wheat breads and noodles were investigated. The gluten strength of doughs were discriminated due to wheat cultivar. Reduced flour particle size led to the doughs with a stronger gluten strength (i.e., smaller C2), lower degree of starch retrogradation (i.e., smaller C5), and longer relaxation time (i.e., larger n values). Firmer crumb of breads were prepared by flours with smaller particle size. With increased bran content, the gluten strength of dough weakened (i.e., increased C2), the development and relaxation time of dough and the degree of starch retrogradation decreased (i.e., decreased C1 time, n values and C5), the dough structure became more porous, and the product texture appeared to be firmer. As such, outcomes from this research will provide a practical guidance for the bakery industry to improve the consumer acceptability of whole wheat products.


Assuntos
Pão , Farinha , Triticum/química , Tamanho da Partícula , Glutens/química , Reologia , Amido/química
3.
J Vis Exp ; (184)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35758680

RESUMO

Phenolic acids are a class of organic compounds that bear both a phenolic group, and a carboxylic group. They are found in grains and concentrate in the bran of cereals or seed coat of legumes. They possess antioxidant properties that have generated much research interest in recent years, about their potential antioxidant protective health functions. This work presents a generalized method for the extraction of free soluble phenolic acids from whole grains and analysis of their antioxidant capacity. Five whole grain samples comprising two cereals (wheat and yellow corn) and three legumes (cowpea bean, kidney bean, and soybean), were used. The grains were milled into flour and their free soluble phenolic acids extracted using aqueous methanol. The compounds were then identified using a high-pressure liquid chromatograph (HPLC). The Folin-Ciocalteu method was used to determine their total phenolic content while their antioxidant capacities were determined using the DPPH radical scavenging capacity, Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. The phenolic acids identified included vanillic, caffeic, p-coumaric and ferulic acids. Vanillic acid was identified only in cowpea while caffeic acid was identified only in kidney bean. p-Coumaric acid was identified in yellow corn, cowpea, and soybean, while ferulic acid was identified in all the samples. Ferulic acid was the predominant phenolic acid identified. The total concentration of phenolic acids in the samples decreased in the following order: soybean > cowpea bean > yellow corn = kidney bean > wheat. The total antioxidant capacity (sum of values of DPPH, TEAC and ORAC assays) decreased as follows: soybean > kidney bean > yellow corn = cowpea bean > wheat. This study concluded that HPLC analysis as well as DPPH, TEAC, and ORAC assays provide useful information about the phenolic acid composition and antioxidant properties of whole grains.


Assuntos
Antioxidantes , Fabaceae , Grão Comestível/química , Fabaceae/química , Sequestradores de Radicais Livres , Hidroxibenzoatos , Fenóis/análise , Fenóis/química , Glycine max , Triticum/química , Zea mays/química
4.
Food Chem ; 358: 129905, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940288

RESUMO

In order to gain understanding of bioaccessibility of phenolic acids in food-grade barley, an investigation was conducted using four cooked whole-grain, hulless, barley varieties. An in vitro digestion model was used to mimic human upper gastrointestinal digestion. Boiling enhanced the extractability of bound phenolic acids while digestion increased the level of free phenolic acids. The high bioaccessibilities observed were likely due to the release of bound phenolic acids during cooking and digestion. The major bioaccessible phenolics were ferulic and p-coumaric acids with bioaccessibility ranging from 131 to 173% and 51-135%, respectively. Peru-35 had significantly greater bioaccessibility of ferulic acid compared to other varieties. A hydroxycinnamic acid amide not reported before in boiled barley, N1, N8- dicaffeoyl spermidine, was identified in free phenolic extracts with relatively high abundance compared to the phenolic acids. It may provide additional anti-inflammatory and antioxidant functions. These cooked whole-grain, hulless barley varieties are sources of bioaccessible phenolic acids.


Assuntos
Hordeum/química , Fenóis/farmacocinética , Disponibilidade Biológica , Canadá , Culinária , Ácidos Cumáricos/farmacocinética , Digestão , Humanos , Hidroxibenzoatos/farmacocinética , Fenóis/análise , Grãos Integrais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA