Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Brain ; 146(12): 5086-5097, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977818

RESUMO

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Assuntos
Gagueira , Humanos , Animais , Camundongos , Gagueira/genética , Gagueira/patologia , Peptidil-Prolil Isomerase F , Fala , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico
2.
Mol Nutr Food Res ; 67(11): e2200775, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929150

RESUMO

SCOPE: To avoid ingestion of potentially harmful substances, humans are equipped with about 25 bitter taste receptor genes (TAS2R) expressed in oral taste cells. Humans exhibit considerable variance in their bitter tasting abilities, which are associated with genetic polymorphisms in bitter taste receptor genes. One of these variant receptor genes, TAS2R2, is initially believed to represent a pseudogene. However, TAS2R2 exists in a putative functional variant within some populations and can therefore be considered as an additional functional bitter taste receptor. METHODS AND RESULTS: To learn more about the function of the experimentally neglected TAS2R2, a functional screening with 122 bitter compounds is performed. The study observes responses with eight of the 122 bitter substances and identifies the substance phenylbutazone as a unique activator of TAS2R2 among the family of TAS2Rs, thus filling one more gap in the array of cognate bitter substances. CONCLUSIONS: The comprehensive characterization of the receptive range of TAS2R2 allows the classification into the group of TAS2Rs with a medium number of bitter agonists. The variability of bitter taste and its potential influences on food choice in some human populations may be even higher than assumed.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética
3.
Brain Commun ; 3(4): fcab266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859215

RESUMO

Developmental stuttering is a common speech disorder with strong genetic underpinnings. Recently, stuttering has been associated with mutations in genes involved in lysosomal enzyme trafficking. However, how these mutations affect the brains of people who stutter remains largely unknown. In this study, we compared grey matter volume and white matter fractional anisotropy between a unique group of seven subjects who stutter and carry the same rare heterozygous AP4E1 coding mutations and seven unrelated controls without such variants. The carriers of the AP4E1 mutations are members of a large Cameroonian family in which the association between AP4E1 and persistent stuttering was previously identified. Compared to controls, mutation carriers showed reduced grey matter volume in the thalamus, visual areas and the posterior cingulate cortex. Moreover, reduced fractional anisotropy was observed in the corpus callosum, consistent with the results of previous neuroimaging studies of people who stutter with unknown genetic backgrounds. Analysis of gene expression data showed that these structural differences appeared at the locations in which expression of AP4E1 is relatively high. Moreover, the pattern of grey matter volume differences was significantly associated with AP4E1 expression across the left supratentorial regions. This spatial congruency further supports the connection between AP4E1 mutations and the observed structural differences.

4.
Nutrients ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120898

RESUMO

Our sense of taste arises from the sensory information generated after compounds in the oral cavity and oropharynx activate taste receptor cells situated on taste buds. This produces the perception of sweet, bitter, salty, sour, or umami stimuli, depending on the chemical nature of the tastant. Taste impairments (dysgeusia) are alterations of this normal gustatory functioning that may result in complete taste losses (ageusia), partial reductions (hypogeusia), or over-acuteness of the sense of taste (hypergeusia). Taste impairments are not life-threatening conditions, but they can cause sufficient discomfort and lead to appetite loss and changes in eating habits, with possible effects on health. Determinants of such alterations are multiple and consist of both genetic and environmental factors, including aging, exposure to chemicals, drugs, trauma, high alcohol consumption, cigarette smoking, poor oral health, malnutrition, and viral upper respiratory infections including influenza. Disturbances or loss of smell, taste, and chemesthesis have also emerged as predominant neurological symptoms of infection by the recent Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus strain 2 (SARS-CoV-2), as well as by previous both endemic and pandemic coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and SARS-CoV. This review is focused on the main causes of alteration, reduction, and loss of taste and their potential repercussion on dietary habits and health, with a special focus on the recently developed hypotheses regarding the mechanisms through which SARS-CoV-2 might alter taste perception.


Assuntos
Ageusia/etiologia , Infecções por Coronavirus/complicações , Disgeusia/etiologia , Comportamento Alimentar , Pneumonia Viral/complicações , Percepção Gustatória , Paladar , Apetite , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Olfato
5.
Neurobiol Lang (Camb) ; 1(3): 365-380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34041495

RESUMO

Developmental stuttering is a childhood onset neurodevelopmental disorder with an unclear etiology. Subtle changes in brain structure and function are present in both children and adults who stutter. It is a highly heritable disorder, and 12-20% of stuttering cases may carry a mutation in one of four genes involved in intracellular trafficking. To better understand the relationship between genetics and neuroanatomical changes, we used gene expression data from the Allen Institute for Brain Science and voxel-based morphometry to investigate the spatial correspondence between gene expression patterns and differences in gray matter volume between children with persistent stuttering (n = 26, and 87 scans) and their fluent peers (n = 44, and 139 scans). We found that the expression patterns of two stuttering-related genes (GNPTG and NAGPA) from the Allen Institute data exhibited a strong positive spatial correlation with the magnitude of between-group gray matter volume differences. Additional gene set enrichment analyses revealed that genes whose expression was highly correlated with the gray matter volume differences were enriched for glycolysis and oxidative metabolism in mitochondria. Because our current study did not examine the participants' genomes, these results cannot establish the direct association between genetic mutations and gray matter volume differences in stuttering. However, our results support further study of the involvement of lysosomal enzyme targeting genes, as well as energy metabolism in stuttering. Future studies assessing variations of these genes in the participants' genomes may lead to increased understanding of the biological mechanisms of the observed spatial relationship between gene expression and gray matter volume.

6.
Proc Natl Acad Sci U S A ; 116(35): 17515-17524, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405983

RESUMO

Stuttering is a common neurodevelopmental disorder that has been associated with mutations in genes involved in intracellular trafficking. However, the cellular mechanisms leading to stuttering remain unknown. Engineering a mutation in N-acetylglucosamine-1-phosphate transferase subunits α and ß (GNPTAB) found in humans who stutter into the mouse Gnptab gene resulted in deficits in the flow of ultrasonic vocalizations similar to speech deficits of humans who stutter. Here we show that other human stuttering mutations introduced into this mouse gene, Gnptab Ser321Gly and Ala455Ser, produce the same vocalization deficit in 8-day-old pup isolation calls and do not affect other nonvocal behaviors. Immunohistochemistry showed a marked decrease in staining of astrocytes, particularly in the corpus callosum of the Gnptab Ser321Gly homozygote mice compared to wild-type littermates, while the staining of cerebellar Purkinje cells, oligodendrocytes, microglial cells, and dopaminergic neurons was not significantly different. Diffusion tensor imaging also detected deficits in the corpus callosum of the Gnptab Ser321Gly mice. Using a range of cell type-specific Cre-drivers and a Gnptab conditional knockout line, we found that only astrocyte-specific Gnptab-deficient mice displayed a similar vocalization deficit. These data suggest that vocalization defects in mice carrying human stuttering mutations in Gnptab derive from abnormalities in astrocytes, particularly in the corpus callosum, and provide support for hypotheses that focus on deficits in interhemispheric communication in stuttering.


Assuntos
Astrócitos/metabolismo , Corpo Caloso/metabolismo , Mutação , Gagueira/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Vocalização Animal , Animais , Contagem de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Diester Fosfórico Hidrolases/sangue
7.
J Commun Disord ; 80: 11-17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31003007

RESUMO

PURPOSE: We investigated whether outcomes of therapy for persistent developmental stuttering differ in individuals who carry a mutation in one of the known genes associated with stuttering compared to individuals without such mutations. METHOD: We studied outcomes of an intensive fluency shaping-based therapy program in individuals with persistent developmental stuttering. We evaluated a cohort of 51 stuttering individuals with who carried a mutation in either the GNPTAB, GNPTG, NAGPA, or AP4E1 gene. We compared therapy outcomes in these individuals with outcomes in 51 individuals matched for age, gender, and ethnicity, who stutter and underwent the same therapy program, and did not carry a mutation in any of these genes. Fluency pre- and post-therapy was evaluated using blinded observer-based quantitative stuttering dysfluency measures (Dysfluent Words Score, DWS), and by subjects' self-reported measures of struggle, avoidance and expectancy behavior associated with speaking (Perceptions of Stuttering Inventory, PSI). The difference between pre- and post-therapy fluency scores was taken as the measure of near-term therapy efficacy. RESULTS: Comparison of fluency measures showed a strong effect of therapy overall. Mutation carriers achieved significantly less resolution in PSI following therapy, with PSI scores showing significantly less improvement in individuals who carry a mutation (p = 0.0157, RR = 1.75, OR = 2.92) while the group difference in DWS between carriers and non-carriers was statistically not significant in the present study, the trend observed in the results warrants further research focused on this important issue. CONCLUSIONS: These results suggest stuttering is more resistant to therapy in individuals who carry a mutation in one of the genes known to be associated with stuttering.


Assuntos
Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Diester Fosfórico Hidrolases/genética , Fonoterapia , Gagueira/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Autorrelato
8.
PLoS Genet ; 15(2): e1007916, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768591

RESUMO

In the U.S., more than 80% of African-American smokers use mentholated cigarettes, compared to less than 30% of Caucasian smokers. The reasons for these differences are not well understood. To determine if genetic variation contributes to mentholated cigarette smoking, we performed an exome-wide association analysis in a multiethnic population-based sample from Dallas, TX (N = 561). Findings were replicated in an independent cohort of African Americans from Washington, DC (N = 741). We identified a haplotype of MRGPRX4 (composed of rs7102322[G], encoding N245S, and rs61733596[G], T43T), that was associated with a 5-to-8 fold increase in the odds of menthol cigarette smoking. The variants are present solely in persons of African ancestry. Functional studies indicated that the variant G protein-coupled receptor encoded by MRGPRX4 displays reduced agonism in both arrestin-based and G protein-based assays, and alteration of agonism by menthol. These data indicate that genetic variation in MRGPRX4 contributes to inter-individual and inter-ethnic differences in the preference for mentholated cigarettes, and that the existence of genetic factors predisposing vulnerable populations to mentholated cigarette smoking can inform tobacco control and public health policies.


Assuntos
Negro ou Afro-Americano/genética , Fumar Cigarros/genética , Haplótipos/genética , Mentol , Receptores Acoplados a Proteínas G/genética , Adulto , Estudos de Coortes , Feminino , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/efeitos adversos , Nicotiana/efeitos adversos
10.
Chem Senses ; 43(7): 463-468, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29878085

RESUMO

It was shown more than 40 years ago that the ability to perceive the bitterness of the fruit of the Antidesma bunius tree is inversely correlated with the ability to perceive the well-studied bitter tastant phenylthiocarbamide (PTC). To determine if variants of the TAS2R38 gene, which encodes the PTC taste receptor, or variants in any of the other TAS2R bitter or TAS1R sweet receptor genes account for Antidesma taste perception, we recruited an independent subject sample and examined associations between these taste receptor gene haplotypes and Antidesma perception. Consistent with previous findings, almost none of our subjects who reported Antidesma juice as bitter was a PTC "responder" by previous definitions (i.e. a PTC taster). In our study, of the 132 individuals who perceived PTC as bitter, 15 perceived Antidesma as bitter, although these 15 subjects had very weak bitterness perception scores. Examination of TAS2R38 gene haplotypes showed that, of the subjects who perceive Antidesma as bitter, all carried at least one copy of the TAS2R38 AVI (PTC non-taster) haplotype. However, 86 subjects carried at least one AVI haplotype and failed to perceive Antidesma as bitter. No other TAS2R or TAS1R gene variants showed an association with Antidesma bitter, sweet, or sour perception. Our results show that TAS2R38 haplotypes are associated with differential perception of Antidesma berry juice bitterness, and that all those who perceive this bitterness carry at least one AVI haplotype. This indicates that the AVI haplotype is necessary for this perception, but that additional variable factors are involved.


Assuntos
Frutas , Haplótipos , Malpighiales , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , Paladar/genética , Adulto , Feminino , Humanos , Masculino , Fenótipo , Feniltioureia/administração & dosagem , Papilas Gustativas , Adulto Jovem
11.
Mol Genet Genomic Med ; 5(2): 95-102, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28361094

RESUMO

Evidence for genetic factors in persistent developmental stuttering has accumulated over the past four decades, and the genes that underlie this disorder are starting to be identified. The genes identified to date, all point to deficits in intracellular trafficking in this disorder.

12.
Mol Biol Evol ; 34(7): 1587-1595, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333344

RESUMO

Lineage-specific gene losses can be driven by selection or environmental adaptations. However, a lack of studies on the original function of species-specific pseudogenes leaves a gap in our understanding of their role in evolutionary histories. Pseudogenes are of particular relevance for taste perception genes, which encode for receptors that confer the ability to both identify nutritionally valuable substances and avoid potentially harmful substances. To explore the role of bitter taste pseudogenization events in human origins, we restored the open reading frames of the three human-specific pseudogenes and synthesized the reconstructed functional hTAS2R2, hTAS2R62 and hTAS2R64 receptors. We have identified ligands that differentially activate the human and chimpanzee forms of these receptors and several other human functional TAS2Rs. We show that these receptors are narrowly tuned, suggesting that bitter-taste sensitivities evolved independently in different species, and that these pseudogenization events occurred because of functional redundancy. The restoration of function of lineage-specific pseudogenes can aid in the reconstruction of their evolutionary history, and in understanding the forces that led to their pseudogenization.


Assuntos
Receptores Acoplados a Proteínas G/genética , Paladar/genética , Animais , Evolução Biológica , Evolução Molecular , Humanos , Ligantes , Pan troglodytes/genética , Filogenia , Pseudogenes/genética , Especificidade da Espécie , Biologia Sintética , Papilas Gustativas/metabolismo
14.
PLoS One ; 11(10): e0164157, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711175

RESUMO

Common TAS2R38 taste receptor gene variants specify the ability to taste phenylthiocarbamide (PTC), 6-n-propylthiouracil (PROP) and structurally related compounds. Tobacco smoke contains a complex mixture of chemical substances of varying structure and functionality, some of which activate different taste receptors. Accordingly, it has been suggested that non-taster individuals may be more likely to smoke because of their inability to taste bitter compounds present in tobacco smoke, but results to date have been conflicting. We studied three cohorts: 237 European-Americans from the state of Georgia, 1,353 European-Americans and 2,363 African-Americans from the Dallas Heart Study (DHS), and 4,973 African-Americans from the Dallas Biobank. Tobacco use data was collected and TAS2R38 polymorphisms were genotyped for all participants, and PTC taste sensitivity was assessed in the Georgia population. In the Georgia group, PTC tasters were less common among those who smoke: 71.5% of smokers were PTC tasters while 82.5% of non-smokers were PTC tasters (P = 0.03). The frequency of the TAS2R38 PAV taster haplotype showed a trend toward being lower in smokers (38.4%) than in non-smokers (43.1%), although this was not statistically significant (P = 0.31). In the DHS European-Americans, the taster haplotype was less common in smokers (37.0% vs. 44.0% in non-smokers, P = 0.003), and conversely the frequency of the non-taster haplotype was more common in smokers (58.7% vs. 51.5% in non-smokers, P = 0.002). No difference in the frequency of these haplotypes was observed in African Americans in either the Dallas Heart Study or the Dallas Biobank. We conclude that TAS2R38 haplotypes are associated with smoking status in European-Americans but not in African-American populations. PTC taster status may play a role in protecting individuals from cigarette smoking in specific populations.


Assuntos
Variação Genética , Receptores Acoplados a Proteínas G/genética , Fumar/genética , Percepção Gustatória/genética , Adulto , Negro ou Afro-Americano/genética , Estudos de Coortes , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Feniltioureia/farmacologia , Percepção Gustatória/efeitos dos fármacos , Produtos do Tabaco , População Branca/genética , Adulto Jovem
15.
Chem Senses ; 41(8): 649-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27340135

RESUMO

Bitter taste receptor genes (TAS2Rs) harbor extensive diversity, which is broadly distributed across human populations and strongly associated with taste response phenotypes. The majority of TAS2R variation is composed of single-nucleotide polymorphisms. However, 2 closely positioned loci at 12p13, TAS2R43 and -45, harbor high-frequency deletion (Δ) alleles in which genomic segments are absent, resulting in copy number variation (CNV). To resolve their chromosomal structure and organization, we generated maps using long-range contig alignments and local sequencing across the TAS2R43-45 region. These revealed that the deletion alleles (43Δ and 45Δ) are 37.8 and 32.2kb in length, respectively and span the complete coding region of each gene (~1kb) along with extensive up- and downstream flanking sequence, producing separate CNVs at the 2 loci. Comparisons with a chimpanzee genome, which contained intact homologs of TAS2R43, -45, and nearby TAS2Rs, indicated that the deletions evolved recently, through unequal recombination in a cluster of closely related loci. Population genetic analyses in 946 subjects from 52 worldwide populations revealed that copy number ranged from 0 to 2 at both TAS2R43 and TAS2R45, with 43Δ and 45Δ occurring at high global frequencies (0.33 and 0.18). Estimated recombination rates between the loci were low (ρ = 2.7×10(-4); r = 6.6×10(-9)) and linkage disequilibrium was high (D' = 1.0), consistent with their adjacent genomic positioning and recent origin. Geographic variation pointed to an African origin for the deletions. However, no signatures of natural selection were found in population structure or integrated haplotype scores spanning the region, suggesting that patterns of diversity at TAS2R43 and -45 are primarily due to genetic drift.


Assuntos
Variações do Número de Cópias de DNA/genética , Genética Populacional , Receptores Acoplados a Proteínas G/genética , Alelos , Sequência de Aminoácidos , Humanos , Alinhamento de Sequência , Paladar/genética , Percepção Gustatória/genética
17.
Sci Rep ; 6: 25506, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27138342

RESUMO

The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes.


Assuntos
Evolução Molecular , Receptores Acoplados a Proteínas G/genética , Seleção Genética/genética , Paladar/genética , Bases de Dados Genéticas , Variação Genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Feniltioureia/química , Propiltiouracila/química
18.
Curr Biol ; 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27151663

RESUMO

A promising approach to understanding the mechanistic basis of speech is to study disorders that affect speech without compromising other cognitive or motor functions. Stuttering, also known as stammering, has been linked to mutations in the lysosomal enzyme-targeting pathway, but how this remarkably specific speech deficit arises from mutations in a family of general "cellular housekeeping" genes is unknown. To address this question, we asked whether a missense mutation associated with human stuttering causes vocal or other abnormalities in mice. We compared vocalizations from mice engineered to carry a mutation in the Gnptab (N-acetylglucosamine-1-phosphotransferase subunits alpha/beta) gene with wild-type littermates. We found significant differences in the vocalizations of pups with the human Gnptab stuttering mutation compared to littermate controls. Specifically, we found that mice with the mutation emitted fewer vocalizations per unit time and had longer pauses between vocalizations and that the entropy of the temporal sequence was significantly reduced. Furthermore, Gnptab missense mice were similar to wild-type mice on an extensive battery of non-vocal behaviors. We then used the same language-agnostic metrics for auditory signal analysis of human speech. We analyzed speech from people who stutter with mutations in this pathway and compared it to control speech and found abnormalities similar to those found in the mouse vocalizations. These data show that mutations in the lysosomal enzyme-targeting pathway produce highly specific effects in mouse pup vocalizations and establish the mouse as an attractive model for studying this disorder.

19.
Eur J Hum Genet ; 24(8): 1137-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26883091

RESUMO

Recent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering, and language disorders suggest that neurogenetic approaches may also reveal at least one etiology of auditory processing disorder (APD). A person with an APD typically has difficulty understanding speech in background noise despite having normal pure-tone hearing sensitivity. The estimated prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown and have not been explored by molecular or genetic approaches. The aim of our study was to determine the heritability of frequency and temporal resolution for auditory signals and speech recognition in noise in 96 identical or fraternal twin pairs, aged 6-11 years. Measures of auditory processing (AP) of non-speech sounds included backward masking (temporal resolution), notched noise masking (spectral resolution), pure-tone frequency discrimination (temporal fine structure sensitivity), and nonsense syllable recognition in noise. We provide evidence of significant heritability, ranging from 0.32 to 0.74, for individual measures of these non-speech-based AP skills that are crucial for understanding spoken language. Identification of specific heritable AP traits such as these serve as a basis to pursue the genetic underpinnings of APD by identifying genetic variants associated with common AP disorders in children and adults.


Assuntos
Transtornos da Percepção Auditiva/genética , Interação Gene-Ambiente , Mascaramento Perceptivo , Percepção da Altura Sonora , Transtornos da Percepção Auditiva/epidemiologia , Criança , Feminino , Humanos , Masculino , Gêmeos Dizigóticos , Gêmeos Monozigóticos
20.
Eur J Hum Genet ; 24(4): 529-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26130485

RESUMO

Homozygous mutations in GNPTAB and GNPTG are classically associated with mucolipidosis II (ML II) alpha/beta and mucolipidosis III (ML III) alpha/beta/gamma, which are rare lysosomal storage disorders characterized by multiple pathologies. Recently, variants in GNPTAB, GNPTG, and the functionally related NAGPA gene have been associated with non-syndromic persistent stuttering. In a worldwide sample of 1013 unrelated individuals with non-syndromic persistent stuttering we found 164 individuals who carried a rare non-synonymous coding variant in one of these three genes. We compared the frequency of these variants with those in population-matched controls and genomic databases, and their location with those reported in mucolipidosis. Stuttering subjects displayed an excess of non-synonymous coding variants compared to controls and individuals in the 1000 Genomes and Exome Sequencing Project databases. We identified a total of 81 different variants in our stuttering cases. Virtually all of these were missense substitutions, only one of which has been previously reported in mucolipidosis, a disease frequently associated with complete loss-of-function mutations. We hypothesize that rare non-synonymous coding variants in GNPTAB, GNPTG, and NAGPA may account for as much as 16% of persistent stuttering cases, and that variants in GNPTAB and GNPTG are at different sites and may in general, cause less severe effects on protein function than those in ML II alpha/beta and ML III alpha/beta/gamma.


Assuntos
Mucolipidoses/genética , Gagueira/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Frequência do Gene , Homozigoto , Humanos , Mutação de Sentido Incorreto , Diester Fosfórico Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...