Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2316175121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408247

RESUMO

The microtubule-associated protein tau aggregates into amyloid fibrils in Alzheimer's disease and other neurodegenerative diseases. In these tauopathies, tau is hyperphosphorylated, suggesting that this posttranslational modification (PTM) may induce tau aggregation. Tau is also phosphorylated in normal developing brains. To investigate how tau phosphorylation induces amyloid fibrils, here we report the atomic structures of two phosphomimetic full-length tau fibrils assembled without anionic cofactors. We mutated key Ser and Thr residues to Glu in two regions of the protein. One construct contains three Glu mutations at the epitope of the anti-phospho-tau antibody AT8 (AT8-3E tau), whereas the other construct contains four Glu mutations at the epitope of the antibody PHF1 (PHF1-4E tau). Solid-state NMR data show that both phosphomimetic tau mutants form homogeneous fibrils with a single set of chemical shifts. The AT8-3E tau rigid core extends from the R3 repeat to the C terminus, whereas the PHF1-4E tau rigid core spans R2, R3, and R4 repeats. Cryoelectron microscopy data show that AT8-3E tau forms a triangular multi-layered core, whereas PHF1-4E tau forms a triple-stranded core. Interestingly, a construct combining all seven Glu mutations exhibits the same conformation as PHF1-4E tau. Scalar-coupled NMR data additionally reveal the dynamics and shape of the fuzzy coat surrounding the rigid cores. These results demonstrate that specific PTMs induce structurally specific tau aggregates, and the phosphorylation code of tau contains redundancy.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Microscopia Crioeletrônica , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Anticorpos/genética , Epitopos , Processamento de Proteína Pós-Traducional , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Proteínas do Grupo Polycomb/genética
2.
Biochemistry ; 63(1): 181-190, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38127783

RESUMO

Helical structures in proteins include not only α-helices but also 310 and π helices. These secondary structures differ in the registry of the C═O···H-N hydrogen bonds, which are i to i + 4 for α-helices, i to i + 3 for 310 helices, and i to i + 5 for π-helices. The standard NMR observable of protein secondary structures are chemical shifts, which are, however, insensitive to the precise type of helices. Here, we introduce a three-dimensional (3D) 1H-detected experiment that measures and assigns CO-HN cross-peaks to distinguish the different types of hydrogen-bonded helices. This hCOhNH experiment combines efficient cross-polarization from CO to HN with 13C, 15N, and 1H chemical shift correlation to detect the relative proximities of the COi-Hi+jN spin pairs. We demonstrate this experiment on the membrane-bound transmembrane domain of the SARS-CoV-2 envelope (E) protein (ETM). We show that the C-terminal five residues of ETM form a 310-helix, whereas the rest of the transmembrane domain have COi-Hi+4N hydrogen bonds that are characteristic of α-helices. This result confirms the recent high-resolution solid-state NMR structure of the open state of ETM, which was solved in the absence of explicit hydrogen-bonding restraints. This C-terminal 310 helix may facilitate proton and calcium conduction across the hydrophobic gate of the channel. This hCOhNH experiment is generally applicable and can be used to distinguish not only different types of helices but also different types of ß-strands and other hydrogen-bonded conformations in proteins.


Assuntos
Proteínas , Prótons , Ligação de Hidrogênio , Proteínas/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 120(44): e2310067120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878719

RESUMO

The microtubule-associated protein tau aggregates into neurofibrillary tangles in Alzheimer's disease (AD). The main type of aggregates, the paired helical filaments (PHF), incorporate about 20% of the full-length protein into the rigid core. Recently, cryo-electron microscopy data showed that a protease-resistant fragment of tau (residues 297-391) self-assembles in vitro in the presence of divalent cations to form twisted filaments whose molecular structure resembles that of AD PHF tau [S. Lövestam et al., Elife 11, e76494 (2022)]. To investigate whether this tau construct is uniquely predisposed to this morphology and structure, we fibrillized tau (297-391) under the reported conditions and determined its structure using solid-state NMR spectroscopy. Unexpectedly, the protein assembled predominantly into nontwisting ribbons whose rigid core spans residues 305-357. This rigid core forms a ß-arch that turns at residues 322CGS324. Two protofilaments stack together via a long interface that stretches from G323 to I354. Together, these two protofilaments form a four-layered ß-sheet core whose sidechains are stabilized by numerous polar and hydrophobic interactions. This structure gives insight into the fibril morphologies and molecular conformations that can be adopted by this protease-resistant core of AD tau under different pH and ionic conditions.


Assuntos
Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Microscopia Crioeletrônica , Citoesqueleto/metabolismo , Emaranhados Neurofibrilares/metabolismo , Peptídeo Hidrolases , Proteínas tau/química , Proteínas tau/metabolismo
4.
Sci Adv ; 9(41): eadi9007, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831764

RESUMO

The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.


Assuntos
COVID-19 , Proteínas Viroporinas , Humanos , Transporte de Íons , SARS-CoV-2 , Treonina
5.
J Phys Chem B ; 127(34): 7518-7530, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37606918

RESUMO

Single-span oligomeric α-helical transmembrane proteins are common in virus ion channels, which are targets of antiviral drugs. Knowledge about the high-resolution structures of these oligomeric α-helical bundles is so far scarce. Structure determination of these membrane proteins by solid-state NMR traditionally requires resolving and assigning protein chemical shifts and measuring many interhelical distances, which are time-consuming. To accelerate experimental structure determination, here we introduce a simple solid-state NMR approach that uses magnetization transfer from water and lipid protons to the protein. By detecting the water- and lipid-transferred intensities of the high-sensitivity methyl 13C signals of Leu, Val, and Ile residues, which are highly enriched in these membrane proteins, we can derive models of the topology of these homo-oligomeric helical bundles. The topology is specified by the positions of amino acid residues in heptad repeats and the orientations of residues relative to the channel pore, lipids, and the helical interface. We demonstrate this water- and lipid-edited methyl NMR approach on the envelope (E) protein of SARS-CoV-2, the causative agent of the COVID-19 pandemic. We show that water-edited and lipid-edited 2D 13C-13C correlation spectra can be measured with sufficient sensitivity. Even without resolving multiple residues of the same type in the NMR spectra, we can obtain the helical bundle topology. We apply these experiments to the structurally unknown E proteins of the MERS coronavirus and the human coronavirus NL63. The resulting structural topologies show interesting differences in the positions of the aromatic residues in these three E proteins, suggesting that these viroporins may have different mechanisms of activation and ion conduction.


Assuntos
COVID-19 , Proteínas de Membrana , Humanos , Água , Pandemias , SARS-CoV-2 , Fatores de Transcrição , Lipídeos
6.
Sci Adv ; 9(28): eadh4731, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450599

RESUMO

The intrinsically disordered protein tau associates with microtubules in neurons but aggregates into cross-ß amyloid fibrils that propagate in neurodegenerative brains. Different tauopathies have different structures for the rigid fibril core. To understand the molecular basis of tau assembly into different polymorphs, here we use solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the structure of a tau protein that includes all microtubule-binding repeats and a proline-rich domain. This P2R tau assembles into well-ordered filaments when induced by heparin. Two- and three-dimensional NMR spectra indicate that R2 and R3 repeats constitute the rigid ß-sheet core of the fibril. Unexpectedly, the amino-terminal half of R2 forms a ß-arch at ambient temperature (24°C) but a continuous ß-strand at 12°C, which dimerizes with the R2 of another protofilament. This temperature-dependent structure indicates that R2 is conformationally more plastic than the R3 domain. The distinct conformational stabilities of different microtubule-binding repeats give insight into the energy landscape of tau fibril formation.


Assuntos
Amiloide , Proteínas tau , Proteínas tau/metabolismo , Amiloide/química , Ligação Proteica , Microtúbulos/metabolismo , Citoesqueleto/metabolismo
7.
J Biomol NMR ; 77(3): 93-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093339

RESUMO

NMR isotope shifts occur due to small differences in nuclear shielding when nearby atoms are different isotopes. For molecules dissolved in 1:1 H2O:D2O, the resulting mixture of N-H and N-D isotopes leads to a small splitting of resonances from adjacent nuclei. We used multidimensional NMR to measure isotope shifts for the proteins CUS-3iD and CspA. We observed four-bond 4∆N(ND) isotope shifts in high-resolution 2D 15N-TROSY experiments of the perdeuterated proteins that correlate with the torsional angle psi. Three-bond 3∆C'(ND) isotope shifts detected in H(N)CO spectra correlate with the intraresidue H-O distance, and to a lesser extent with the dihedral angle phi. The conformational dependence of the isotope shifts agree with those previously reported in the literature. Both the 4∆N(ND) and 3∆C'(ND) isotope shifts are sensitive to distances between the atoms giving rise to the isotope shifts and the atoms experiencing the splitting, however, these distances are strongly correlated with backbone dihedral angles making it difficult to resolve distance from stereochemical contributions to the isotope shift. H(NCA)CO spectra were used to measure two-bond 2∆C'(ND) isotope shifts and [D]/[H] fractionation factors. Neither parameter showed significant differences for hydrogen-bonded sites, or changes over a 25° temperature range, suggesting they are not sensitive to hydrogen bonding. Finally, the quartet that arises from the combination of 2∆C'(ND) and 3∆C'(ND) isotope shifts in H(CA)CO spectra was used to measure synchronized hydrogen exchange for the sequence neighbors A315-S316 in the protein CUS-3iD. In many of our experiments we observed minor resonances due to the 10% D2O used for the sample deuterium lock, indicating isotope shifts can be a source of spectral heterogeneity in standard NMR experiments. We suggest that applications of isotope shifts such as conformational analysis and correlated hydrogen exchange could benefit from the larger magnetic fields becoming available.


Assuntos
Amidas , Proteínas , Amidas/química , Deutério/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Hidrogênio/química , Conformação Proteica , Ligação de Hidrogênio
8.
J Mol Biol ; 435(5): 167966, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682677

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8-65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a ß-sheet-rich conformation that contains three ß-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third ß-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the ß-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt ß-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the ß-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.


Assuntos
SARS-CoV-2 , Humanos , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Proteica em Folha beta , SARS-CoV-2/química
9.
Biochemistry ; 61(21): 2280-2294, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219675

RESUMO

The SARS-CoV-2 envelope (E) protein is a viroporin associated with the acute respiratory symptoms of COVID-19. E forms cation-selective ion channels that assemble in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment. The channel activity of E is linked to the inflammatory response of the host cell to the virus. Like many viroporins, E is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the E stoichiometry have led to inconclusive results and suggested mixtures of oligomers whose exact nature might vary with the detergent used. Here, we employ 19F solid-state nuclear magnetic resonance and the centerband-only detection of exchange (CODEX) technique to determine the oligomeric number of E's transmembrane domain (ETM) in lipid bilayers. The CODEX equilibrium value, which corresponds to the inverse of the oligomeric number, indicates that ETM assembles into pentamers in lipid bilayers, without any detectable fraction of low-molecular-weight oligomers. Unexpectedly, at high peptide concentrations and in the presence of the lipid phosphatidylinositol, the CODEX data indicate that more than five 19F spins are within a detectable distance of about 2 nm, suggesting that the ETM pentamers cluster in the lipid bilayer. Monte Carlo simulations that take into account peptide-peptide and peptide-lipid interactions yielded pentamer clusters that reproduced the CODEX data. This supramolecular organization is likely important for E-mediated virus assembly and budding and for the channel function of the protein.


Assuntos
Proteínas do Envelope de Coronavírus , Bicamadas Lipídicas , SARS-CoV-2 , Bicamadas Lipídicas/química , Domínios Proteicos , Proteínas Viroporinas , Proteínas do Envelope de Coronavírus/química
10.
J Phys Chem A ; 126(39): 7021-7032, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36150071

RESUMO

Several solid-state NMR techniques have been introduced recently to measure nanometer distances involving 19F, whose high gyromagnetic ratio makes it a potent nuclear spin for structural investigation. These solid-state NMR techniques either use 19F correlation with 1H or 13C to obtain qualitative interatomic contacts or use the rotational-echo double-resonance (REDOR) pulse sequence to measure quantitative distances. However, no NMR technique is yet available for disambiguating 1H-19F distances in multiply fluorinated proteins and protein-ligand complexes. Here, we introduce a three-dimensional (3D) 19F-15N-1H correlation experiment that resolves the distances of multiple fluorines to their adjacent amide protons. We show that optimal polarization transfer between 1H and 19F spins is achieved using an out-and-back 1H-19F REDOR sequence. We demonstrate this 3D correlation experiment on the model protein GB1 and apply it to the multidrug-resistance transporter, EmrE, complexed to a tetrafluorinated substrate. This technique should be useful for resolving and assigning distance constraints in multiply fluorinated proteins, leading to significant savings of time and precious samples compared to producing several singly fluorinated samples. Moreover, the method enables structural determination of protein-ligand complexes for ligands that contain multiple fluorines.


Assuntos
Proteínas , Prótons , Amidas , Flúor/química , Ligantes , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química
11.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887087

RESUMO

PLG-007 is a developmental therapeutic compound that has been clinically shown to reduce the magnitude of postprandial glucose excursions and has the potential to be an adjunct treatment for diabetes and inflammatory-related diseases. The present investigation is aimed at understanding the molecular mechanism of action of PLG-007 and its galactomannan (GM) components GMα and GMß (in a 1:4 mass ratio, respectively) on enzyme (i.e., α-amylase, maltase, and lactase) hydrolysis of glucose polymers using colorimetric assays and 13C HSQC NMR spectroscopy. The starch-iodine colorimetric assay indicated that GMα strongly inhibits α-amylase activity (~16-fold more potent than GMß) and thus is the primary active component in PLG-007. 13C HSQC experiments, used to follow the α-amylase-mediated hydrolysis of starch and amylopectin, further demonstrate the α-amylase inhibitory effect of GMα via α-amylase-mediated hydrolysis of starch and amylopectin. Maltohexaose (MT6) was used to circumvent the relative kinetic complexity of starch/amylopectin degradation in Michaelis-Menten analyses. The Vmax, KM, and Ki parameters were determined using peak volume integrals from 13C HSQC NMR spectra. In the presence of PLG-007 with α-amylase and MT6, the increase in KM from 7.5 ± 0.6 × 10-3 M (control) to 21 ± 1.4 × 10-3 M, with no significant change in Vmax, indicates that PLG-007 is a competitive inhibitor of α-amylase. Using KM values, Ki was estimated to be 2.1 ± 0.9 × 10-6 M; however, the microscopic Ki value of GMα is expected to be larger as the binding stoichiometry is likely to be greater than 1:1. Colorimetric assays also demonstrated that GMα is a competitive inhibitor of the enzymes maltase and lactase. Overall, this study provides insight as to how PLG-007 (GMα) is likely to function in vivo.


Assuntos
Amilopectina , alfa-Glucosidases , Amilopectina/química , Galactose/análogos & derivados , Glucose , Hidrólise , Lactase , Mananas , Amido/metabolismo , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
12.
Sci Adv ; 8(29): eabo4459, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857846

RESUMO

The protein tau associates with microtubules to maintain neuronal health. Posttranslational modifications of tau interfere with this binding, leading to tau aggregation in neurodegenerative disorders. Here, we use solid-state nuclear magnetic resonance (NMR) to investigate the structure of the microtubule-binding domain of tau. Wild-type tau that contains four microtubule-binding repeats and a pseudorepeat R' is studied. Complexed with taxol-stabilized microtubules, the immobilized residues exhibit well-resolved two-dimensional spectra that can be assigned to the amino-terminal region of R4 and the R' domain. When tau coassembles with tubulin to form unstable microtubules, the R' signals remain, whereas the R4 signals disappear, indicating that R' remains immobilized, whereas R4 becomes more mobile. Therefore, R' outcompetes the other four repeats to associate with microtubules. These NMR data, together with previous cryo-electron microscopy densities, indicate an extended conformation for microtubule-bound R'. R' contains the largest number of charged residues among all repeats, suggesting that charge-charge interaction drives tau-microtubule association.


Assuntos
Microtúbulos , Proteínas tau , Sequência de Aminoácidos , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Ligação Proteica , Tubulina (Proteína)/química , Proteínas tau/metabolismo
13.
Nat Commun ; 13(1): 2967, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624093

RESUMO

Alzheimer's disease (AD) is defined by intracellular neurofibrillary tangles formed by the microtubule-associated protein tau and extracellular plaques formed by the ß-amyloid peptide. AD tau tangles contain a mixture of tau isoforms with either four (4R) or three (3R) microtubule-binding repeats. Here we use solid-state NMR to determine how 4R and 3R tau isoforms mix at the molecular level in AD tau aggregates. By seeding differentially isotopically labeled 4R and 3R tau monomers with AD brain-derived tau, we measured intermolecular contacts of the two isoforms. The NMR data indicate that 4R and 3R tau are well mixed in the AD-tau seeded fibrils, with a 60:40 incorporation ratio of 4R to 3R tau and a small homotypic preference. The AD-tau templated 4R tau, 3R tau, and mixed 4R and 3R tau fibrils exhibit no structural differences in the rigid ß-sheet core or the mobile domains. Therefore, 4R and 3R tau are fluently recruited into the pathological fold of AD tau aggregates, which may explain the predominance of AD among neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Isoformas de Proteínas/metabolismo
14.
J Am Chem Soc ; 144(15): 6839-6850, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380805

RESUMO

The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.


Assuntos
COVID-19 , Cálcio , Cálcio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Íons , Lipídeos , Conformação Proteica , SARS-CoV-2 , Água
15.
Nat Commun ; 13(1): 991, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181664

RESUMO

The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand HN-F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F4-TPP+), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated. Here, to understand how substrate transport depends on pH, we determine the structure of the EmrE-TPP complex at high pH, where both Glu14 residues are deprotonated. The high-pH complex exhibits an elongated and hydrated binding pocket in which the substrate is similarly exposed to the two sides of the membrane. In contrast, the low-pH complex asymmetrically exposes the substrate to one side of the membrane. These pH-dependent EmrE conformations provide detailed insights into the alternating-access model, and suggest that the high-pH conformation may facilitate proton binding in the presence of the substrate, thus accelerating the conformational change of EmrE to export the substrate.


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Prótons , Antiporters/ultraestrutura , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo
16.
J Am Chem Soc ; 144(3): 1416-1430, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015530

RESUMO

Amyloid imaging by positron emission tomography (PET) is an important method for diagnosing neurodegenerative disorders such as Alzheimer's disease. Many 11C- and 18F-labeled PET tracers show varying binding capacities, specificities, and affinities for their target proteins. The structural basis of these variations is poorly understood. Here we employ 19F and 13C solid-state NMR to investigate the binding sites of a PET ligand, flutemetamol, to the 40-residue Alzheimer's ß-amyloid peptide (Aß40). Analytical high-performance liquid chromatography and 19F NMR spectra show that flutemetamol binds the current Aß40 fibril polymorph with a stoichiometry of one ligand per four to five peptides. Half of the ligands are tightly bound while the other half are loosely bound. 13C and 15N chemical shifts indicate that this Aß40 polymorph has an immobilized N-terminus, a non-ß-sheet His14, and a non-ß-sheet C-terminus. We measured the proximity of the ligand fluorine to peptide residues using 19F-13C and 19F-1H rotational-echo double-resonance (REDOR) experiments. The spectra show that three segments in the peptide, 12VHH14, 18VFF20, and 39VV40, lie the closest to the ligand. REDOR-constrained docking simulations indicate that these three segments form multiple binding sites, and the ligand orientations and positions at these sites are similar across different Aß polymorphs. Comparison of the flutemetamol-interacting residues in Aß40 with the small-molecule binding sites in other amyloid proteins suggest that conjugated aromatic compounds preferentially bind ß-sheet surface grooves lined by aromatic, polar, and charged residues. These motifs may explain the specificity of different PET tracers to different amyloid proteins.


Assuntos
Peptídeos beta-Amiloides
17.
Biochemistry ; 60(25): 2033-2043, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34124902

RESUMO

The peptide hormone glucagon is prescribed as a pharmaceutical compound to treat diabetic hypoglycemia. However, at the acidic pH where it is highly soluble, glucagon rapidly aggregates into inactive and cytotoxic amyloid fibrils. The recently determined high-resolution structure of these fibrils revealed various stabilizing molecular interactions. On the basis of this structure, we have now designed four arginine mutants of glucagon that resist fibrillization at pharmaceutical concentrations for weeks. An S2R, T29R double mutant and a T29R single mutant remove a hydrogen-bonding interaction in the wild-type fibril, whereas a Y13R, A19R double mutant and a Y13R mutant remove a cation-π interaction. 1H solution nuclear magnetic resonance spectra and ultraviolet absorbance data indicate that these mutants remain soluble in pH 2 buffer under quiescent conditions at concentrations of ≤4 mg/mL for weeks. Under stressed conditions with high salt concentrations and agitation, these mutants fibrillize significantly more slowly than the wild type. The S2R, T29R mutant and the T29R mutant exhibit a mixture of random coil and α-helical conformations, while the Y13R mutant is completely random coil. The mutation sites are chosen to be uninvolved in strong interactions with the glucagon receptor in the active structure of the peptide. Therefore, these arginine mutants of glucagon are promising alternative compounds for treating hypoglycemia.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Glucagon/metabolismo , Hipoglicemiantes/metabolismo , Multimerização Proteica , Proteínas Amiloidogênicas/química , Arginina/química , Dicroísmo Circular , Desenho de Fármacos , Glucagon/química , Temperatura Alta , Hipoglicemiantes/química , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas , Multimerização Proteica/efeitos dos fármacos , Cloreto de Sódio/química , Solubilidade
18.
J Am Chem Soc ; 143(20): 7839-7851, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983722

RESUMO

Many neurodegenerative diseases such as Alzheimer's disease are characterized by pathological ß-sheet filaments of the tau protein, which spread in a prion-like manner in patient brains. To date, high-resolution structures of tau filaments obtained from patient brains show that the ß-sheet core only includes portions of the microtubule-binding repeat domains and excludes the C-terminal residues, indicating that the C-terminus is dynamically disordered. Here, we use solid-state NMR spectroscopy to identify the ß-sheet core of full-length 0N3R tau fibrillized using heparin. Assignment of 13C and 15N chemical shifts of the rigid core of the protein revealed a single predominant ß-sheet conformation, which spans not only the R3, R4, R' repeats but also the entire C-terminal domain (CT) of the protein. This massive ß-sheet core qualitatively differs from all other tau fibril structures known to date. Using long-range correlation NMR experiments, we found that the R3 and R4 repeats form a ß-arch, similar to that seen in some of the brain-derived tau fibrils, but the R1 and R3 domains additionally stack against the CT, reminiscent of previously reported transient interactions of the CT with the microtubule-binding repeats. This expanded ß-sheet core structure suggests that the CT may have a protective effect against the formation of pathological tau fibrils by shielding the amyloidogenic R3 and R4 domains, preventing side-on nucleation. Truncation and post-translational modification of the CT in vivo may thus play an important role in the progression of tauopathies.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas tau/química , Humanos , Conformação Proteica em Folha beta
19.
Commun Biol ; 4(1): 338, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712696

RESUMO

The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.


Assuntos
Vírus da Influenza B/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Proteínas Virais/metabolismo , Água/metabolismo , Histidina , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Vírus da Influenza B/genética , Canais Iônicos/genética , Simulação de Dinâmica Molecular , Espectroscopia de Prótons por Ressonância Magnética , Prótons , Proteínas Virais/genética
20.
Nat Struct Mol Biol ; 27(12): 1202-1208, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33177698

RESUMO

An essential protein of the SARS-CoV-2 virus, the envelope protein E, forms a homopentameric cation channel that is important for virus pathogenicity. Here we report a 2.1-Å structure and the drug-binding site of E's transmembrane domain (ETM), determined using solid-state NMR spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow pore. The protein deviates from the ideal α-helical geometry due to three phenylalanine residues, which stack within each helix and between helices. Together with valine and leucine interdigitation, these cause a dehydrated pore compared with the viroporins of influenza viruses and HIV. Hexamethylene amiloride binds the polar amino-terminal lumen, whereas acidic pH affects the carboxy-terminal conformation. Thus, the N- and C-terminal halves of this bipartite channel may interact with other viral and host proteins semi-independently. The structure sets the stage for designing E inhibitors as antiviral drugs.


Assuntos
Proteínas do Envelope de Coronavírus/química , Bicamadas Lipídicas/química , SARS-CoV-2/química , Amantadina/química , Amilorida/análogos & derivados , Amilorida/química , Antivirais/química , Proteínas do Envelope de Coronavírus/genética , Dimiristoilfosfatidilcolina/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fenilalanina/química , Fosfolipídeos/química , Conformação Proteica , Domínios Proteicos , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...