Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 125: 102433, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220973

RESUMO

Monitoring in the U.S. state of Washington across the period 2007-2019 showed that Woronichinia has been present in many lakes state-wide. This cyanobacterium was commonly dominant or sub-dominant in cyanobacterial blooms in the wet temperate region west of the Cascade Mountains. In these lakes, Woronichinia often co-existed with Microcystis, Dolichospermum and Aphanizomenon flos-aquae and the cyanotoxin microcystin has often been present in those blooms, although it has not been known whether Woronichinia is a toxin producer. We report the first complete genome of Woronichinia naegeliana WA131, assembled from the metagenome of a sample collected from Wiser Lake, Washington, in 2018. The genome contains no genes for cyanotoxin biosynthesis or taste-and-odor compounds, but there are biosynthetic gene clusters for other bioactive peptides, including anabaenopeptins, cyanopeptolins, microginins and ribosomally produced, post-translationally modified peptides. Genes for photosynthesis, nutrient acquisition, vitamin synthesis and buoyancy that are typical of bloom-forming cyanobacteria are present, although nitrate and nitrite reductase genes are conspicuously absent. However, the 7.9 Mbp genome is 3-4 Mbp larger than those of the above-mentioned frequently co-existing cyanobacteria. The increased genome size is largely due to an extraordinary number of insertion sequence elements (transposons), which account for 30.3% of the genome and many of which are present in multiple copies. The genome contains a relatively large number of pseudogenes, 97% of which are transposase genes. W. naegeliana WA131 thus seems to be able to limit the potentially deleterious effects of high rates of recombination and transposition to the mobilome fraction of its genome.


Assuntos
Cianobactérias , Microcystis , Lagos , Nitratos
2.
Harmful Algae ; 118: 102309, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195416

RESUMO

A sample from a 2019 cyanobacterial bloom in a freshwater reservoir in eastern Oregon, USA, was used to produce a metagenome from which the complete, circular 7.3 Mbp genome of Limnoraphis sp. WC205 was assembled. The Limnoraphis sp. WC205 genome contains gas vesicle genes, genes for N2-fixation and genes for both phycocyanin- and phycoerythrin-containing phycobilisomes. Limnoraphis was present in Willow Creek Reservoir throughout the summer and fall, coexisting with various other cyanobacteria in blooms that were associated with microcystin. The absence of cyanotoxin genes from the Limnoraphis sp. WC205 genome showed this cyanobacterium to be non-toxigenic, although it is predicted to produce cyanobactins closely related to Microcystis aeruginosa microcyclamides. DNA sequence corresponding to the Microcystis mcyG gene identified Microcystis as the microcystin producer in this lake.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/genética , Lagos/microbiologia , Microcistinas , Microcystis/genética , Ficobilissomas , Ficocianina , Ficoeritrina
3.
J Virol Methods ; 309: 114595, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931228

RESUMO

Turnip yellow mosaic virus (TYMV) is a well-studied icosahedral plant virus that has attractive properties for nanoscience applications. Stable empty particles devoid of viral genomic RNA have historically been generated from virions by: 1. high pressure; 2. extreme alkaline pH; and 3. freeze-thaw using liquid nitrogen. Herein we report a fourth and more convenient avenue for empty particle formation through EDTA treatment, implicating chelation of virion-associated cations. We present findings that confirm TYMV virions purified in an EDTA-based buffer are converted to 94 % empty on average during purification. Additional experimentation revealed TYMV virions purified through CsCl vs. sucrose gradients are more readily converted to empty particles after freeze thaw. These studies are novel as they show a purification method through EDTA-treatment that can generate stable empty particles devoid of viral genome. The convenience of this method should prove suitable for scientists seeking to use TYMV capsids in nanoscience-inspired applications. Importantly, these findings provide insight into historical discrepancies in creating empty particles after freeze-thaw, as the method in which TYMV virions are purified influences the downstream virion-to-empty conversion process.


Assuntos
Tymovirus , Capsídeo/química , Cátions Bivalentes/análise , Ácido Edético/análise , Nitrogênio/análise , RNA Viral/análise , Sacarose/análise , Tymovirus/química , Tymovirus/genética , Vírion/genética
4.
Harmful Algae ; 116: 102241, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710201

RESUMO

Several genomes of Nostocales ADA clade members from the US Pacific Northwest were recently sequenced. Biosynthetic genes for microcystin, cylindrospermopsin or anatoxin-a were present in 7 of the 15 Dolichospermum/Anabaena strains and none of the 5 Aphanizomenon flos-aquae (AFA) strains. Toxin analyses (ELISA and LC-MS/MS) were conducted to quantitate and identify microcystin (MC) and cylindrospermopsin (CYN) congeners/analogs in samples dominated by Dolichospermum spp. of known genome sequence. MC-LR was the main congener produced by Dolichospermum spp. from Junipers Reservoir, Lake Billy Chinook and Odell Lake, while a congener provisionally identified as [Dha7]MC-HtyR was produced by a Dolichospermum sp. in Detroit Reservoir. A second Dolichospermum sp. from Detroit Reservoir was found to produce 7-epi-CYN, with 7-deoxy-CYN also present, but no CYN. The monitoring history of each of these lakes indicates the capacity for high levels of cyanotoxins during periods when Dolichospermum spp. are the dominant cyanobacteria. The diversity of ADA strains found in the US Pacific NW emphasizes the importance of these cyanobacteria as potentially toxic HAB formers in this temperate climatic region. Our results linking congener and genetic identity add data points that will help guide development of improved tools for predicting congener specificity from cyanotoxin gene sequences.


Assuntos
Anabaena , Aphanizomenon , Toxinas Bacterianas , Cianobactérias , Alcaloides , Aphanizomenon/genética , Cromatografia Líquida , Cianobactérias/genética , Toxinas de Cianobactérias , Microcistinas , Oregon , Espectrometria de Massas em Tandem
5.
Harmful Algae ; 103: 102005, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980445

RESUMO

The genome sequences of 16 Nostocales cyanobacteria have been determined. Most of them are complete or near-complete genome sequences derived by long-read metagenome sequencing of recent harmful algal blooms (HABs) in freshwater lakes without the potential bias of culture isolation. The genomes are all members of the recently recognized ADA clade (Driscoll et al., Harmful Algae, 77:93, 2018), which we argue represents a genus. We identify 10 putative species-level branches within the clade, on the basis of 91-gene phylogenomic and average nucleotide identity analyses. The assembled genomes each correspond to a single morphotype in the original sample, but distinct genomes from different HABs in some cases correspond to similar morphotypes. We present data indicating that the ADA clade is a highly significant component of current cyanobacterial HABs, including members assigned to the prevalent Dolichospermum and Aphanizomenon genera, as well as Cuspidothrix and Anabaena. In general, currently used genus and species names within the ADA clade are not monophyletic. We infer that the morphological characters routinely used in taxonomic assignments are not reliable for discriminating species within the ADA clade. Taxonomic revisions will be needed to create a genus with a single name (we recommend Anabaena) and to adopt species names that do not depend on morphological traits that lack sufficient discrimination and specificity, while recognizing the utility of some easily observable and distinct morphologies.


Assuntos
Anabaena , Aphanizomenon , Cianobactérias , Cianobactérias/genética , Proliferação Nociva de Algas , Lagos
6.
Harmful Algae ; 104: 102037, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023075

RESUMO

The ADA clade of Nostocales cyanobacteria, a group that is prominent in current harmful algal bloom events, now includes over 40 genome sequences with the recent addition of sixteen novel sequenced genomes (Dreher et al., Harmful Algae, 2021). Fourteen genomes are complete (closed), enabling highly detailed assessments of gene content and genome architecture. ADA genomes contain 5 rRNA operons, genes expected to support a photoautotrophic and diazotrophic lifestyle, and a varied array of genes for the synthesis of bioactive secondary metabolites. Genes for the production of the taste-and-odor compound geosmin and the four major classes of cyanotoxins - anatoxin-a, cylindrospermopsin, microcystin and saxitoxin - are represented in members of the ADA clade. Notably, the gene array for the synthesis of cylindrospermopsin by Dolichospermum sp. DET69 was located on a plasmid, raising the possibility of facile horizontal transmission. However, genes supporting independent conjugative transfer of this plasmid are lacking. Further, analysis of genomic loci containing this and other cyanotoxin gene arrays shows evidence that these arrays have long-term stability and do not appear to be genomic islands easily capable of horizontal transmission to other cells. There is considerable diversity in the gene complements of individual ADA genomes, including the variable presence of physiologically important genes: genomes in three species-level subclades lack the gas vesicle genes that facilitate a planktonic lifestyle, and, surprisingly, the genome of Cuspidothrix issatschenkoi CHARLIE-1, a reported diazotroph, lacks the genes for nitrogen fixation. Notably, phylogenetically related genomes possess limited synteny, indicating a prominent role for chromosome rearrangements during ADA strain evolution. The genomes contain abundant insertion sequences and repetitive transposase genes, which could be the main drivers of genome rearrangement through active transposition and homologous recombination. No prophages were found, and no evidence of viral infection was observed in the bloom population samples from which the genomes discussed here were derived. Phages thus seem to have a limited influence on ADA evolution.


Assuntos
Toxinas Bacterianas , Cianobactérias , Toxinas Bacterianas/genética , Genômica , Proliferação Nociva de Algas
7.
Harmful Algae ; 101: 101971, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526187

RESUMO

Lakes that experience recurrent toxic cyanobacterial harmful algae blooms (cyanoHABS) are often subject to cultural eutrophication, where landscape development and upland activities increase the nutrient inputs to the water column and fuel cyanoHABS. Few studies have focused on the response of a lake to nutrient inputs for which the natural geomorphic setting predisposes a nutrient-rich water column to already support abundant cyanobacteria. Here, we present a sediment core record from a lake surrounded by parkland that experiences recurrent cyanoHABs which produce dangerous levels of the neurotoxin, anatoxin-a, impacting the recreational use of the lake and park. Using photoautotrophic pigments in the sediment record, we establish cyanobacteria have long been part of the diverse and abundant phytoplankton community within the lake. Despite this long record, shotgun metagenome and other DNA analyses of the sediment record suggest that the current anatoxin-a producer Dolichospermum sp. WA102 only emerged to dominate the cyanobacterial community in the mid-1990s. A period of lakeshore farming that finished in the 1950s-1960s and possibly the stocking of rainbow trout fry (1970-2016) coincide with a progressive shift in primary production, together with a change in bacterial communities. Based on the history of the lake and contemporary ecology of Dolichospermum, we propose that the legacy of nutrient inputs and changes in nutrient cycling within the lake has encouraged the development of an ecosystem where the toxin producing Dolichospermum sp WA102 is highly competitive. Understanding the historical presence of cyanobacteria in the lake provides a context for current-day management strategies of cyanoHABs.


Assuntos
Cianobactérias , Lagos , Toxinas de Cianobactérias , Ecossistema , Tropanos
8.
Toxicon X ; 1: 100003, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32831346

RESUMO

Thirty-two 14-month old steers died during a period of four days (19-23 June 2017) after drinking from Junipers Reservoir (southeastern Oregon, USA) during a cyanobacterial bloom. Clinical and histopathological findings were consistent with acute liver disease, and microcystin-LR was present at 3000 µg/L in a reservoir water sample and at 7100 µg/L in the rumen contents of one of the mortalities. Serum biochemistry and histological examination indicated severe liver damage consistent with microcystin toxicosis. Microscopic observation of reservoir water samples, limited to frozen or poorly stored and partially degraded samples, indicated the presence of abundant Anabaena/Dolichospermum, but the presence of other toxic cyanobacteria such as Microcystis could not be excluded. Metagenomic analysis showed the presence in these samples of a single cyanobacterium whose cpcBA, rpoB and rbcL genes indicated membership in the Anabaena/Dolichospermum genus. The sequence of a complete mcy gene cluster with homology to previously identified Anabaena mcy genes was recovered. These results emphasize the capacity for Anabaena/Dolichospermum blooms to produce lethal levels of microcystin, posing a danger to public health and livestock. Further, our findings indicate that such occurrences can occur outside the far-northern latitudes in which microcystin-producing Anabaena have typically been found.

9.
Harmful Algae ; 77: 93-107, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30005805

RESUMO

In order to better understand the relationships among current Nostocales cyanobacterial blooms, eight genomes were sequenced from cultured isolates or from environmental metagenomes of recent planktonic Nostocales blooms. Phylogenomic analysis of publicly available sequences placed the new genomes among a group of 15 genomes from four continents in a distinct ADA clade (Anabaena/Dolichospermum/Aphanizomenon) within the Nostocales. This clade contains four species-level groups, two of which include members with both Anabaena-like and Aphanizomenon flos-aquae-like morphology. The genomes contain many repetitive genetic elements and a sizable pangenome, in which ABC-type transporters are highly represented. Alongside common core genes for photosynthesis, the differentiation of N2-fixing heterocysts, and the uptake and incorporation of the major nutrients P, N and S, we identified several gene pathways in the pangenome that may contribute to niche partitioning. Genes for problematic secondary metabolites-cyanotoxins and taste-and-odor compounds-were sporadically present, as were other polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters. By contrast, genes predicted to encode the ribosomally generated bacteriocin peptides were found in all genomes.


Assuntos
Cianobactérias/classificação , Genoma Bacteriano , Proteínas de Bactérias/análise , Cianobactérias/genética , Proliferação Nociva de Algas , Filogenia
10.
Virus Res ; 252: 13-21, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29730306

RESUMO

Turnip yellow mosaic virus (TYMV) was able to enter animal cells when the spherical plant virus was conjugated with Tat, a cell penetrating peptide (CPP). Tat was chemically attached to the surface lysine residues of TYMV using hydrazone chemistry. Baby hamster kidney (BHK) cells were incubated with either unmodified or Tat-conjugated TYMV and examined by flow cytometry and confocal microscopic analyses. Tat conjugation was shown to be more efficient than Lipofectamine in allowing TYMV to enter the mammalian cells. Tat-assisted-transfection was also associated with less loss of cell viability than lipofection. Among the CPPs tested (Tat, R8, Pep-1 and Pen), it was observed that R8 and Pen were also effective while Pep-1 was not. We also examined if the internal space of TYMV can be used to load fluorescein dye as a model cargo. When TYMV is treated by freezing and thawing, the virus is known to convert into a structure with a 6-8 nm hole and release viral RNA. When the resultant pot-like particles were reacted with fluorescein-5-maleimide using interior sulfhydryl groups as conjugation sites, about 145 fluorescein molecules were added per particle. The fluorescein-loaded TYMV particles were conjugated with Tat and introduced into BHK cells, again with higher transfection efficiency compared to lipofection. Our studies demonstrate the potential of modified TYMV as an efficient system for therapeutic cargo delivery to mammalian cells.


Assuntos
Capsídeo/química , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Tymovirus , Animais , Linhagem Celular , Cricetinae , RNA Viral/metabolismo , Transfecção
11.
Environ Microbiol ; 19(9): 3619-3637, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730710

RESUMO

Harmful blooms of the cyanobacterium Microcystis sp. have become increasingly pervasive in the San Francisco Estuary Delta (USA) since the early 2000s and their rise has coincided with substantial decreases in several important fish species. Direct and indirect effects Microcystis blooms may have on the Delta food web were investigated. The Microcystis population was tracked for 2 years at six sites throughout the Delta using quantitative PCR. High-throughput amplicon sequencing and colony PCR sequencing revealed the presence of 10 different strains of Microcystis, including 6 different microcystin-producing strains. Shotgun metagenomic analysis identified a variety of Microcystis secondary metabolite pathways, including those for the biosynthesis of: aeruginosin, cyanopeptolin, microginin, microviridin and piricyclamide. A sizable reduction was observed in microbial community diversity during a large Microcystis bloom (H' = 0.61) relative to periods preceding (H' = 2.32) or following (H' = 3.71) the bloom. Physicochemical conditions of the water column were stable throughout the bloom period. The elevated abundance of a cyanomyophage with high similarity to previously sequenced isolates known to infect Microcystis sp. was implicated in the bloom's collapse. Network analysis was employed to elucidate synergistic and antagonistic relationships between Microcystis and other bacteria and indicated that only very few taxa were positively correlated with Microcystis.


Assuntos
Proliferação Nociva de Algas , Microbiota , Microcystis/classificação , Microcystis/isolamento & purificação , Animais , Biodiversidade , DNA Bacteriano/genética , Ecologia , Estuários , Peixes , Cadeia Alimentar , Microcistinas/biossíntese , Microcystis/genética , Microcystis/virologia , Reação em Cadeia da Polimerase em Tempo Real , São Francisco , Microbiologia da Água
12.
Stand Genomic Sci ; 12: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28127419

RESUMO

Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality. Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

13.
Appl Environ Microbiol ; 82(17): 5410-20, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342564

RESUMO

UNLABELLED: While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. IMPORTANCE: Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific identification of the microorganism(s) responsible for water quality degradation is often complicated by the presence of co-occurring taxa capable of producing these undesirable metabolites. Here we present a framework for how shotgun metagenomics can be used to definitively identify problematic microorganisms and how these data can guide the development of rapid genetic assays for routine monitoring purposes.


Assuntos
Bactérias/isolamento & purificação , Cianobactérias/isolamento & purificação , Água Potável/química , Água Potável/microbiologia , Água Doce/química , Água Doce/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/metabolismo , Humanos , Metagenômica , Odorantes/análise , Paladar , Abastecimento de Água
14.
BMC Genomics ; 17: 457, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296936

RESUMO

BACKGROUND: Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. RESULTS: The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. CONCLUSION: Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.


Assuntos
Anabaena/genética , Anabaena/metabolismo , Genoma Bacteriano , Genômica , Tropanos/metabolismo , Anabaena/classificação , Anabaena/isolamento & purificação , Biologia Computacional/métodos , Toxinas de Cianobactérias , Metabolismo Energético , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Anotação de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Sintenia , Sequências de Repetição em Tandem
15.
Harmful Algae ; 54: 54-68, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-28073482

RESUMO

The new genus name Dolichospermum, for most of the planktonic former members of the genus Anabaena, is one of the most ubiquitous bloom-forming cyanobacterial genera. Its dominance and persistence have increased in recent years, due to eutrophication from anthropogenic activities and global climate change. Blooms of Dolichospermum species, with their production of secondary metabolites that commonly include toxins, present a worldwide threat to environmental and public health. In this review, recent advances of the genus Dolichospermum are summarized, including taxonomy, genetics, bloom occurrence, and production of toxin and taste-and-odor compounds. The recent and continuing acquisition of genome sequences is ushering in new methods for monitoring and understanding the factors regulating bloom dynamics.


Assuntos
Anabaena/classificação , Anabaena/fisiologia , Toxinas Bacterianas/metabolismo , Biodiversidade , Proliferação Nociva de Algas/fisiologia , Anabaena/genética , Anabaena/metabolismo , Mudança Climática , Monitoramento Ambiental , Eutrofização
16.
Acta Biomater ; 8(8): 2978-85, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22522012

RESUMO

Turnip yellow mosaic virus (TYMV) is a stable 28 nm icosahedral plant virus that can be isolated in gram quantities. In order to study the polyvalent effect of Arg-Gly-Asp (RGD) clustering on the response of bone marrow stem cells (BMSCs), an RGD motif was genetically displayed on the coat protein of the TYMV capsid. Composite films composed of either wild-type TYMV or TYMV-RGD44, in combination with poly(allylamine hydrochloride) (PAH), were fabricated by a layer-by-layer adsorption of virus and PAH. The deposition process was studied by quartz crystal microbalance, UV-visible spectroscopy and atomic force microscopy. BMSC adhesion assays showed enhanced cell adhesion and spreading on TYMV-RGD44 coated substrates compared to native TYMV. These results demonstrate the potential of TYMV as a viable scaffold for bioactive peptide display and cell culturing studies.


Assuntos
Movimento Celular/efeitos dos fármacos , Oligopeptídeos/farmacologia , Células-Tronco/citologia , Tymovirus/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Adesão Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Masculino , Microscopia de Força Atômica , Microscopia de Fluorescência , Poliaminas/farmacologia , Técnicas de Microbalança de Cristal de Quartzo , Ratos , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tymovirus/química , Tymovirus/ultraestrutura , Ultracentrifugação
17.
Virology ; 422(2): 165-73, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22078163

RESUMO

Structural studies have implicated the TYMV N-terminal amino acids of the coat protein (CP) in both static (virion stabilization) and dynamic (RNA encapsidation and disencapsidation) roles. We have deleted residues 2-5, 2-10 and 2-26 from the N-terminus and expressed the mutant CPs in E. coli to assess assembly in the absence of genomic RNA and in plant infections to assess infectivity and virion properties. In E. coli, the deletion constructs formed virus-like particles, but in decreased yield. All mutants were infectious in Chinese cabbage, producing normal symptoms but with a slight delay and decreased viral yields. Virions were progressively less stable with increasing deletion size and also more accessible to small molecules. These results show that the N-terminal 26 amino acids are not essential for viral processes in vivo, although removal of these residues decreases stability and increases porosity, both important factors for virion integrity and survival outside the host.


Assuntos
Proteínas do Capsídeo/fisiologia , Tymovirus/fisiologia , Vírion/fisiologia , Sequência de Aminoácidos , Brassica/virologia , Proteínas do Capsídeo/química , Escherichia coli/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Mutação , Conformação Proteica , RNA Viral/fisiologia
18.
Nucleic Acids Res ; 39(21): 9262-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21768127

RESUMO

With the expansion of the RNA world, antisense strategies have become widespread to manipulate nuclear gene expression but organelle genetic systems have remained aside. The present work opens the field to mitochondria. We demonstrate that customized RNAs expressed from a nuclear transgene and driven by a transfer RNA-like (tRNA-like) moiety are taken up by mitochondria in plant cells. The process appears to follow the natural tRNA import specificity, suggesting that translocation indeed occurs through the regular tRNA uptake pathway. Upon validation of the strategy with a reporter sequence, we developed a chimeric catalytic RNA composed of a specially designed trans-cleaving hammerhead ribozyme and a tRNA mimic. Organelle import of the chimeric ribozyme and specific target cleavage within mitochondria were demonstrated in transgenic tobacco cell cultures and Arabidopsis thaliana plants, providing the first directed knockdown of a mitochondrial RNA in a multicellular eukaryote. Further observations point to mitochondrial messenger RNA control mechanisms related to the plant developmental stage and culture conditions. Transformation of mitochondria is only accessible in yeast and in the unicellular alga Chlamydomonas. Based on the widespread tRNA import pathway, our data thus make a breakthrough for direct investigation and manipulation of mitochondrial genetics.


Assuntos
Mitocôndrias/metabolismo , RNA Catalítico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Engenharia Genética , Dados de Sequência Molecular , RNA/metabolismo , Transporte de RNA , RNA Catalítico/química , RNA Mitocondrial , RNA de Transferência/química , RNA de Transferência/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
19.
Environ Microbiol ; 13(7): 1858-74, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21605306

RESUMO

Bacteriophage S-CRM01 has been isolated from a freshwater strain of Synechococcus and shown to be present in the upper Klamath River valley in northern California and Oregon. The genome of this lytic T4-like phage has a 178,563 bp circular genetic map with 297 predicted protein-coding genes and 33 tRNA genes that represent all 20-amino-acid specificities. Analyses based on gene sequence and gene content indicate a close phylogenetic relationship to the 'photosynthetic' marine cyanomyophages infecting Synechococcus and Prochlorococcus. Such relatedness suggests that freshwater and marine phages can draw on a common gene pool. The genome can be considered as being comprised of three regions. Region 1 is populated predominantly with structural genes, recognized as such by homology to other T4-like phages and by identification in a proteomic analysis of purified virions. Region 2 contains most of the genes with roles in replication, recombination, nucleotide metabolism and regulation of gene expression, as well as 5 of the 6 signature genes of the photosynthetic cyanomyophages (hli03, hsp20, mazG, phoH and psbA; cobS is present in Region 3). Much of Regions 1 and 2 are syntenic with marine cyanomyophage genomes, except that a segment encompassing Region 2 is inverted. Region 3 contains a high proportion (85%) of genes that are unique to S-CRM01, as well as most of the tRNA genes. Regions 1 and 2 contain many predicted late promoters, with a combination of CTAAATA and ATAAATA core sequences. Two predicted genes that are unusual in phage genomes are homologues of cellular spoT and nusG.


Assuntos
Bacteriófagos/classificação , Genoma Viral , Filogenia , Prochlorococcus/virologia , Synechococcus/virologia , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , California , Água Doce/virologia , Genes Virais , Microscopia Eletrônica de Transmissão , Oregon , Fotossíntese/genética , Proteômica , Microbiologia da Água
20.
Appl Environ Microbiol ; 76(15): 5207-13, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543038

RESUMO

Surface samples of the 2007 Microcystis bloom occurring in Copco Reservoir on the Klamath River in Northern California were analyzed genetically by sequencing clone libraries made with amplicons at three loci: the internal transcribed spacer of the rRNA operon (ITS), cpcBA, and mcyA. Samples were taken between June and October, during which time two cell count peaks occurred, in mid-July and early September. The ITS and cpcBA loci could be classified into four or five allele groups, which provided a convenient means for describing the Microcystis population and its changes over time. Each group was numerically dominated by a single, highly represented sequence. Other members of each group varied by changes at 1 to 3 nucleotide positions, while groups were separated by up to 30 nucleotide differences. As deduced by a partial sampling of the clone libraries, there were marked population turnovers during the season, indicated by changes in allele composition at both the ITS and cpcBA loci. Different ITS and cpcBA genotypes appeared to be dominant at the two population peaks. Toxicity (amount of microcystin per cell) and toxigenic potential (mcyB copy number) were lower during the second peak, and the mcyB copy number fell further as the bloom declined.


Assuntos
Eutrofização , Água Doce/microbiologia , Microcystis/classificação , Microcystis/crescimento & desenvolvimento , Polimorfismo Genético , Alelos , Proteínas de Bactérias/genética , California , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genótipo , Microcystis/genética , Dados de Sequência Molecular , Estações do Ano , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...