Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 25(6): 860-870, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37647418

RESUMO

The Australian Monsoon Tropics (AMT) contain some of the most biodiverse forests on the continent. Little is known about the dynamics of rainforest plant microbiomes in general, and there have been no community-level studies on Australian rainforest endophytes, their seasonality, tissue and host specificity. We tested whether community composition of tropical tree endophytes (fungi and bacteria) differs: (i) at different points during a monsoon cycle, (ii) between leaf and stem tissues, (iii) between forest microclimates (gully/ridge), and between (iv) host plant species, and (v) host plant clade, using amplicon sequencing of the bacterial 16S and fungal ITS2 gene regions. Results indicated that the composition of rainforest plant microbiomes differs between wet and dry seasons, which may be explained by physiological shifts in host plants due to annual climate fluctuations from mesic to xeric. Endophyte microbiomes differed between leaves and stems. Distinct fungal communities were associated with host species and clades, with some trees enriched in a number of fungal taxa compared to host plants in other clades. Diversity of bacterial endophytes in plant stems increased in the dry season. We conclude that the microbiomes of tropical plants are responsive to monsoonal climate variation, are highly compartmentalised between plant tissues, and may be partly shaped by the relatedness of their host plants.


Assuntos
Microbiota , Árvores , Floresta Úmida , Austrália , Florestas , Endófitos
2.
Stud Mycol ; 99: 100132, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35027981

RESUMO

The Fusarium oxysporum species complex (FOSC) is a group of closely related plant pathogens long-considered strictly clonal, as sexual stages have never been recorded. Several studies have questioned whether recombination occurs in FOSC, and if it occurs its nature and frequency are unknown. We analysed 410 assembled genomes to answer whether FOSC diversified by occasional sexual reproduction interspersed with numerous cycles of asexual reproduction akin to a model of predominant clonal evolution (PCE). We tested the hypothesis that sexual reproduction occurred in the evolutionary history of FOSC by examining the distribution of idiomorphs at the mating locus, phylogenetic conflict and independent measures of recombination from genome-wide SNPs and genes. A phylogenomic dataset of 40 single copy orthologs was used to define structure a priori within FOSC based on genealogical concordance. Recombination within FOSC was tested using the pairwise homoplasy index and divergence ages were estimated by molecular dating. We called SNPs from assembled genomes using a k-mer approach and tested for significant linkage disequilibrium as an indication of PCE. We clone-corrected and tested whether SNPs were randomly associated as an indication of recombination. Our analyses provide evidence for sexual or parasexual reproduction within, but not between, clades of FOSC that diversified from a most recent common ancestor about 500 000 years ago. There was no evidence of substructure based on geography or host that might indicate how clades diversified. Competing evolutionary hypotheses for FOSC are discussed in the context of our results.

3.
Persoonia ; 47: 151-177, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37693794

RESUMO

Among the most economically relevant and environmentally devastating diseases globally are those caused by Phytophthora species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan Phytophthora species and infestation of natural ecosystems by Phytophthora cinnamomi have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of Phytophthora in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of Phytophthora. The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was Phytophthora infestans. By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from P. cinnamomi. Native and exotic hosts of different Phytophthora species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of Phytophthora species in Australia. Citation: Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.

4.
Persoonia ; 47: 151-177, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38352973

RESUMO

Among the most economically relevant and environmentally devastating diseases globally are those caused by Phytophthora species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan Phytophthora species and infestation of natural ecosystems by Phytophthora cinnamomi have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of Phytophthora in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of Phytophthora. The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was Phytophthora infestans. By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from P. cinnamomi. Native and exotic hosts of different Phytophthora species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of Phytophthora species in Australia. Citation: Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.

5.
Persoonia ; 45: 251-409, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34456379

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Australia, Austroboletus asper on soil, Cylindromonium alloxyli on leaves of Alloxylon pinnatum, Davidhawksworthia quintiniae on leaves of Quintinia sieberi, Exophiala prostantherae on leaves of Prostanthera sp., Lactifluus lactiglaucus on soil, Linteromyces quintiniae (incl. Linteromyces gen. nov.) on leaves of Quintinia sieberi, Lophotrichus medusoides from stem tissue of Citrus garrawayi, Mycena pulchra on soil, Neocalonectria tristaniopsidis (incl. Neocalonectria gen. nov.) and Xyladictyochaeta tristaniopsidis on leaves of Tristaniopsis collina, Parasarocladium tasmanniae on leaves of Tasmannia insipida, Phytophthora aquae-cooljarloo from pond water, Serendipita whamiae as endophyte from roots of Eriochilus cucullatus, Veloboletus limbatus (incl. Veloboletus gen. nov.) on soil. Austria, Cortinarius glaucoelotus on soil. Bulgaria, Suhomyces rilaensis from the gut of Bolitophagus interruptus found on a Polyporus sp. Canada, Cantharellus betularum among leaf litter of Betula, Penicillium saanichii from house dust. Chile, Circinella lampensis on soil, Exophiala embothrii from rhizosphere of Embothrium coccineum. China, Colletotrichum cycadis on leaves of Cycas revoluta. Croatia, Phialocephala melitaea on fallen branch of Pinus halepensis. Czech Republic, Geoglossum jirinae on soil, Pyrenochaetopsis rajhradensis from dead wood of Buxus sempervirens. Dominican Republic, Amanita domingensis on litter of deciduous wood, Melanoleuca dominicana on forest litter. France, Crinipellis nigrolamellata (Martinique) on leaves of Pisonia fragrans, Talaromyces pulveris from bore dust of Xestobium rufovillosum infesting floorboards. French Guiana, Hypoxylon hepaticolor on dead corticated branch. Great Britain, Inocybe ionolepis on soil. India, Cortinarius indopurpurascens among leaf litter of Quercus leucotrichophora. Iran, Pseudopyricularia javanii on infected leaves of Cyperus sp., Xenomonodictys iranica (incl. Xenomonodictys gen. nov.) on wood of Fagus orientalis. Italy, Penicillium vallebormidaense from compost. Namibia, Alternaria mirabibensis on plant litter, Curvularia moringae and Moringomyces phantasmae (incl. Moringomyces gen. nov.) on leaves and flowers of Moringa ovalifolia, Gobabebomyces vachelliae (incl. Gobabebomyces gen. nov.) on leaves of Vachellia erioloba, Preussia procaviae on dung of Procavia capensis. Pakistan, Russula shawarensis from soil on forest floor. Russia, Cyberlindnera dauci from Daucus carota. South Africa, Acremonium behniae on leaves of Behnia reticulata, Dothiora aloidendri and Hantamomyces aloidendri (incl. Hantamomyces gen. nov.) on leaves of Aloidendron dichotomum, Endoconidioma euphorbiae on leaves of Euphorbia mauritanica, Eucasphaeria proteae on leaves of Protea neriifolia, Exophiala mali from inner fruit tissue of Malus sp., Graminopassalora geissorhizae on leaves of Geissorhiza splendidissima, Neocamarosporium leipoldtiae on leaves of Leipoldtia schultzii, Neocladosporium osteospermi on leaf spots of Osteospermum moniliferum, Neometulocladosporiella seifertii on leaves of Combretum caffrum, Paramyrothecium pituitipietianum on stems of Grielum humifusum, Phytopythium paucipapillatum from roots of Vitis sp., Stemphylium carpobroti and Verrucocladosporium carpobroti on leaves of Carpobrotus quadrifolius, Suttonomyces cephalophylli on leaves of Cephalophyllum pilansii. Sweden, Coprinopsis rubra on cow dung, Elaphomyces nemoreus from deciduous woodlands. Spain, Polyscytalum pini-canariensis on needles of Pinus canariensis, Pseudosubramaniomyces septatus from stream sediment, Tuber lusitanicum on soil under Quercus suber. Thailand, Tolypocladium flavonigrum on Elaphomyces sp. USA, Chaetothyrina spondiadis on fruits of Spondias mombin, Gymnascella minnisii from bat guano, Juncomyces patwiniorum on culms of Juncus effusus, Moelleriella puertoricoensis on scale insect, Neodothiora populina (incl. Neodothiora gen. nov.) on stem cankers of Populus tremuloides, Pseudogymnoascus palmeri from cave sediment. Vietnam, Cyphellophora vietnamensis on leaf litter, Tylopilus subotsuensis on soil in montane evergreen broadleaf forest. Morphological and culture characteristics are supported by DNA barcodes.

6.
Phytopathology ; 106(4): 320-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26714102

RESUMO

Oomycetes from the genus Phytophthora are among the most important plant pathogens in agriculture. Epidemics caused by P. infestans precipitated the great Irish famine and had a major impact on society and human history. In the tropics, P. palmivora is a pathogen of many plant species including cacao (Theobroma cacao), citrus (Citrus sp.), durian (Durio zibethines), jackfruit (Artrocarpus heterophyllus), rubber (Hevea brasiliensis), and several palm species including coconut (Cocos nucifera), and the African oil palm (Elaeis guineensis) as determined recently. The first localized epidemics of bud rot in oil palm in Colombia were reported in 1964. However, recent epidemics of bud rot have destroyed more than 70,000 ha of oil palm in the Western and Central oil palm growing regions of Colombia. The agricultural, social, and economic implications of these outbreaks have been significant in Colombia. Identification of the pathogen after 100 years of investigating the disease in the world enabled further understanding of infection, expression of a range of symptoms, and epidemiology of the disease. This review examines the identification of P. palmivora as the cause of bud rot in Colombia, its epidemiology, and discusses the importance of P. palmivora as a major threat to oil palm plantings globally.


Assuntos
Arecaceae/microbiologia , Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Colômbia , Geografia , Phytophthora/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos
7.
J Virol Methods ; 198: 86-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24388931

RESUMO

Bead-based suspension array systems enable simultaneous fluorescence-based identification of multiple nucleic acid targets in a single reaction. This study describes the development of a novel approach to plant virus and vector diagnostics, a multiplexed 7-plex array that comprises a hierarchical set of assays for the simultaneous detection of begomoviruses and Bemisia tabaci, from both plant and whitefly samples. The multiplexed array incorporates genus, species and strain-specific assays, offering a unique approach for identifying both known and unknown viruses and B. tabaci species. When tested against a large panel of sequence-characterized begomovirus and whitefly samples, the array was shown to be 100% specific to the homologous target. Additionally, the multiplexed array was highly sensitive, efficiently and concurrently determining both virus and whitefly identity from single viruliferous whitefly samples. The detection limit for one assay within the multiplexed array that specifically detects Tomato yellow leaf curl virus-Israel (TYLCV-IL) was quantified as 200fg of TYLCV-IL DNA, directly equivalent to that of TYLCV-specific qPCR. Highly reproducible results were obtained over multiple tests. The flexible multiplexed array described in this study has great potential for use in plant quarantine, biosecurity and disease management programs worldwide.


Assuntos
Begomovirus/genética , Hemípteros/genética , Hemípteros/virologia , Insetos Vetores/genética , Doenças das Plantas/genética , Animais , Doenças das Plantas/virologia
8.
Plant Dis ; 98(3): 401-408, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30708445

RESUMO

Alternaria leaf blotch and fruit spot of apple caused by Alternaria spp. cause annual losses to the Australian apple industry. Erratic control using protectant fungicides is often experienced and may be due to the lack of understanding of the timing of infection and epidemiology of the diseases. We found that Alternaria leaf blotch infection began about 20 days after bloom (DAB) and the highest disease incidence occurred from 70 to 110 DAB. Alternaria fruit spot infection occurred about 100 DAB in the orchard. Fruit inoculations in planta showed that there was no specific susceptible stage of fruit. Leaves and fruit in the lower canopy of trees showed higher levels of leaf blotch and fruit spot incidence than those in the upper canopy and the incidence of leaf blotch in shoot leaves was higher than in spur leaves. Temperature, relative humidity, and rainfall affected leaf blotch and fruit spot incidence. The gained knowledge on the timing of infection and development of disease may aid in the development of more effective disease management strategies.

9.
Plant Dis ; 92(2): 313, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30769416

RESUMO

Muskmelon (Cucumis melo L.) is one of the most important vegetable crops in Oman. In the fall of 2004, sudden wilt was observed in muskmelon grown in a field at Sultan Qaboos University, Muscat. The disease was characterized by rapid collapse of vines and muskmelon plants at the fruit production to maturation stage, associated with brown-to-dark brown rotted primary and secondary roots. The disease resulted in death of more than 85% of muskmelon plants in that field. On potato dextrose agar (PDA), with published methods (1), Pythium spp. were consistently isolated from crowns and roots of plants showing wilt symptoms. Further identification of five isolates of Pythium with sequences of the internal transcribed spacer (ITS) of the ribosomal DNA (1) using ITS1 and ITS4 primers produced a nucleotide sequence 806 bp long, which was identical among all isolates. Comparison with sequences deposited at the National Center for Biotechnology Information revealed 100% nucleotide similarity to a previously published sequence (Accession No. DQ381808) of isolate P091 of P. splendens from cucumber from Oman, for which identification has also been confirmed by morphological characteristics. The sequence of one isolate of P. splendens (P222) was assigned GenBank Accession No. EF546436 and deposited at CBS under Accession No. CBS121855. In pathogenicity tests conducted in a greenhouse, P. splendens induced damping-off symptoms on 7-day-old muskmelon seedlings and also reproduced the same wilt symptoms observed in the field when 2-month-old muskmelon plants were inoculated with 3-day-old P. splendens grown in PDA. To our knowledge, this is the first report of association of P. splendens with wilt of muskmelon in Oman. Reference: (1) A. M. Al-Sa'di et al. Plant Pathol. 56:140, 2007.

10.
Plant Dis ; 91(12): 1675-1681, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30780610

RESUMO

Pseudocercospora macadamiae is an important pathogen of macadamia in Australia, causing a disease known as husk spot. Growers strive to control the disease with a number of carbendazim and copper treatments. The aim of this study was to consider the macadamia fruit developmental stage at which fungicide application is most effective against husk spot, and whether application of copper-only applications at full-size fruit developmental stage toward the end of the season contributed to effective disease control. Fungicides were applied to macadamia trees at four developmental stages in three orchards in two subsequent production seasons. The effects of the treatments on disease incidence and severity were quantified using area under disease progress curve (AUDPC) and logistic regression models. Although disease incidence varied between cultivars, incidence and severity on cv. A16 showed consistent differences between the treatments. Most significant reduction in husk spot incidence occurred when spraying commenced at match-head sized-fruit developmental stage. All treatments significantly reduced husk spot incidence and severity compared with the untreated controls, and a significant positive linear relationship (R2 = 73%) between AUDPC and severity showed that timing of the first fungicide application is important for effective disease control. Application of fungicide at full-size fruit stage reduced disease incidence but had no impact on premature fruit drop.

11.
Fungal Genet Biol ; 37(1): 1-12, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12223184

RESUMO

Two new crosses involving four races (races 7, 16, 17, and 25) of the soybean root and stem rot pathogen Phytophthora sojae were established (7/16 cross; 17/25 cross). An F2 population derived from each cross was used to determine the genetic basis of avirulence towards 11 different resistance genes in soybean. Avirulence was found to be dominant and determined by a single locus for Avr1b, 1d, 1k, 3b, 4, and 6, as expected for a simple gene-for-gene model. We also observed several cases of segregation, inconsistent with a single dominant gene being solely responsible for avirulence, which suggests that the genetic background of the different crosses can affect avirulence. Avr4 and 6 cosegregated in both the 7/16 and 17/25 crosses and, in the 7/16 cross, Avr1b and 1k were closely linked. Information from segregating RAPD, RFLP, and AFLP markers screened on F2 progeny from the two new crosses and two crosses described previously (a total of 212 F2 individuals, 53 from each cross) were used to construct an integrated genetic linkage map of P. sojae. This revised genetic linkage map consists of 386 markers comprising 35 RFLP, 236 RAPD, and 105 AFLP markers, as well as 10 avirulence genes. The map is composed of 21 major linkage groups and seven minor linkage groups covering a total map distance of 1640.4cM.


Assuntos
Mapeamento Cromossômico , Phytophthora/genética , Proteínas de Algas , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Phytophthora/patogenicidade , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Virulência/genética
12.
Plant Dis ; 86(4): 362-366, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30818708

RESUMO

Phytophthora nicotianae is a devastating root and stem pathogen of tobacco (Nicotiana tabacum) in South Africa. Growers strive to control the resulting disease, known as black shank, with metalaxyl treatments and resistant cultivars. The aim of this study was to consider whether development of metalaxyl resistance in P. nicotianae has contributed to poor disease control and if recently developed cultivars with high levels of resistance require metalaxyl for effective control. One hundred and thirty-two isolates of P. nicotianae were screened for sensitivity to metalaxyl. P. nicotianae isolates from most tobacco farms were metalaxyl sensitive. Growth of most isolates was inhibited completely at 1.0 µg a.i./ml. However, isolates from the MKTV tobacco producing area showed EC50 values ranging from 1.02 µg a.i./ml to 3.57 µg a.i./ml. Twenty-one tobacco cultivars were planted and treated with and without metalaxyl in two different growing seasons to evaluate their resistance to P. nicotianae and the value of using metalaxyl. Hicks was the most susceptible cultivar. Vuma/3/46, LK30/40/60-1, and LK33/60 exhibited the greatest resistance to P. nicotianae. Use of metalaxyl in combination with moderately resistant cultivars such as NC60 × TL33 and LK10/80/60 effectively reduced black shank in the field. Resistant cultivars were healthy and no significant difference between metalaxyl treated and untreated plants was observed.

14.
Fungal Genet Biol ; 30(1): 17-32, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10955905

RESUMO

Phylogenetic relationships among 50 Phytophthora species and between Phytophthora and other oomycetes were examined on the basis of the ITS sequences of genomic rDNA. Phytophthora grouped with Pythium, Peronospora, and Halophytophthora, distant from genera in the Saprolegniales. Albugo was intermediate between these two groups. Unlike Pythium, Phytophthora was essentially monophyletic, all but three species forming a cluster of eight clades. Two clades contained only species with nonpapillate sporangia. The other six clades included either papillate and semipapillate, or semipapillate and nonpapillate types, transcending traditional morphological groupings, which are evidently not natural assemblages. Peronospora was related to P. megakarya and P. palmivora and appears to be derived from a Phytophthora that has both lost the ability to produce zoospores and become an obligate biotroph. Three other Phytophthoras located some distance from the main Phytophthora-Peronospora cluster probably represent one or more additional genera.


Assuntos
DNA Espaçador Ribossômico/genética , Oomicetos/genética , Filogenia , Phytophthora/genética , DNA Fúngico/genética , Evolução Molecular , Dados de Sequência Molecular , Oomicetos/classificação , Phytophthora/classificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA
16.
Arch Environ Contam Toxicol ; 34(4): 357-63, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9543505

RESUMO

To evaluate if the water quality of the river Meuse affects macrofauna species, the impact of water from this river on two representative species was tested under controlled conditions. Short-term bioassays with reference populations of the midge Chironomus riparius and the zebra mussel Dreissena polymorpha were performed simultaneously, using growth and filtration rate as sublethal parameters, respectively. Filtration rates of mussels seemed to be slightly inhibited by Meuse water in 1994 and 1995, although this was only significant in the first year. Apparently, although this species is inhabiting the river Meuse, the water quality still causes sublethal effects. In contrast to the mussel, midges were less sensitive to Meuse water in laboratory experiments; growth inhibition was never observed, while in some experiments growth was even enhanced. In the period of testing, it was not possible to relate effects on macrofauna species in laboratory tests to individual substances in polluted river systems. Because the response of the test species was marginal, it is recommended to include more sensitive species as tested in the present study, especially in view of a general improvement of the water quality in the river Meuse.


Assuntos
Água Doce , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/fisiologia , Chironomidae/crescimento & desenvolvimento , Ecologia , Países Baixos
18.
Plant Dis ; 82(9): 1048-1054, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30856834

RESUMO

Surveys of commercial soybean fields, disease nurseries, and trial plots of soybean were conducted throughout eastern Australia between 1979 and 1996, and 694 isolates of Phytophthora sojae were collected and classified into races. Fourteen races, 1, 2, 4, 10, 15, and 25, and eight new races, 46 to 53, were identified, but only races 1, 4, 15, 25, 46, and 53 were found in commercial fields. Races 1 and 15 were the only races found in commercial fields in the soybean-growing areas of Australia up until 1989, with race 1 being the dominant race. Race 4 was found in central New South Wales in 1989 on cultivars with the Rps1a gene, and it is now the dominant race in central and southern New South Wales. Races 46 and 53 have only been found once, in southern New South Wales, and race 25 was identified in the same region in 1994 on a cultivar with the Rps1k gene. Only races 1 and 15 have been found in the northern soybean-growing regions, with the latter dominating, which coincides with the widespread use of cultivars with the Rps2 gene. Changes in the race structure of the P. sojae population from commercial fields in Australia follow the deployment of specific resistance genes.

19.
Phytopathology ; 87(8): 822-7, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18945050

RESUMO

ABSTRACT Phytophthora cinnamomi isolates collected from 1977 to 1986 and 1991 to 1993 in two regions in South Africa were analyzed using isozymes. A total of 135 isolates was analyzed for 14 enzymes representing 20 putative loci, of which four were polymorphic. This led to the identification of nine different multilocus isozyme genotypes. Both mating types of P. cinnamomi occurred commonly in the Cape region, whereas, predominantly, the A2 mating type occurred in the Mpumalanga region of South Africa. A2 mating type isolates could be resolved into seven multilocus isozyme genotypes, compared with only two multilocus isozyme genotypes for the A1 mating type isolates. Low levels of gene (0.115) and genotypic (2.4%) diversity and a low number of alleles per locus (1.43) were observed for the South African P. cinnamomi population. The genetic distance between the Cape and Mpumalanga P. cinnamomi populations was relatively low (D(m) = 0.165), and no specific pattern in regional distribution of multilocus isozyme genotypes could be observed. The genetic distance between the "old" (isolated between 1977 and 1986) and "new" (isolated between 1991 and 1993) P. cinnamomi populations from the Cape was low (D(m) = 0.164), indicating a stable population over time. Three of the nine multilocus isozyme genotypes were specific to the "old" population, and only one multilocus isozyme genotype was specific to the "new" population. Significant differences in allele frequencies, a high genetic distance (D(m) = 0.581) between the Cape A1 and A2 mating type isolates, significant deviations from Hardy-Weinberg equilibrium, a low overall level of heterozygosity, and a high fixation index (0.71) all indicate that sexual reproduction occurs rarely, if at all, in the South African P. cinnamomi population.

20.
Fungal Genet Biol ; 21(3): 278-91, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9299198

RESUMO

Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogen Phytophthora infestans. The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Vos et al., 1995, Nucleic Acids Res. 23: 4407-4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates of P. infestans. The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus. Copyright 1997 Academic Press

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...