Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(1): e14312, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435812

RESUMO

Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.


Assuntos
Produtos Biológicos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Prodigiosina/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia , Zeaxantinas/metabolismo
2.
Microb Cell Fact ; 22(1): 203, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805580

RESUMO

BACKGROUND: Bacillus subtilis is one of the workhorses in industrial biotechnology and well known for its secretion potential. Efficient secretion of recombinant proteins still requires extensive optimization campaigns and screening with activity-based methods. However, not every protein can be detected by activity-based screening. We therefore developed a combined online monitoring system, consisting of an in vivo split GFP assay for activity-independent target detection and an mCherry-based secretion stress biosensor. The split GFP assay is based on the fusion of a target protein to the eleventh ß-sheet of sfGFP, which can complement a truncated sfGFP that lacks this ß-sheet named GFP1-10. The secretion stress biosensor makes use of the CssRS two component quality control system, which upregulates expression of mCherry in the htrA locus thereby allowing a fluorescence readout of secretion stress. RESULTS: The biosensor strain B. subtilis PAL5 was successfully constructed by exchanging the protease encoding gene htrA with mCherry via CRISPR/Cas9. The Fusarium solani pisi cutinase Cut fused to the GFP11 tag (Cut11) was used as a model enzyme to determine the stress response upon secretion mediated by signal peptides SPPel, SPEpr and SPBsn obtained from naturally secreted proteins of B. subtilis. An in vivo split GFP assay was developed, where purified GFP1-10 is added to the culture broth. By combining both methods, an activity-independent high-throughput method was created, that allowed optimization of Cut11 secretion. Using the split GFP-based detection assay, we demonstrated a good correlation between the amount of secreted cutinase and the enzymatic activity. Additionally, we screened a signal peptide library and identified new signal peptide variants that led to improved secretion while maintaining low stress levels. CONCLUSION: Our results demonstrate that the combination of a split GFP-based detection assay for secreted proteins with a secretion stress biosensor strain enables both, online detection of extracellular target proteins and identification of bottlenecks during protein secretion in B. subtilis. In general, the system described here will also enable to monitor the secretion stress response provoked by using inducible promoters governing the expression of different enzymes.


Assuntos
Bacillus subtilis , Técnicas Biossensoriais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Transporte Proteico , Proteínas Recombinantes , Sinais Direcionadores de Proteínas/genética , Proteínas de Bactérias/metabolismo
3.
Front Microbiol ; 14: 1198170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408642

RESUMO

Microfluidic cultivation devices that facilitate O2 control enable unique studies of the complex interplay between environmental O2 availability and microbial physiology at the single-cell level. Therefore, microbial single-cell analysis based on time-lapse microscopy is typically used to resolve microbial behavior at the single-cell level with spatiotemporal resolution. Time-lapse imaging then provides large image-data stacks that can be efficiently analyzed by deep learning analysis techniques, providing new insights into microbiology. This knowledge gain justifies the additional and often laborious microfluidic experiments. Obviously, the integration of on-chip O2 measurement and control during the already complex microfluidic cultivation, and the development of image analysis tools, can be a challenging endeavor. A comprehensive experimental approach to allow spatiotemporal single-cell analysis of living microorganisms under controlled O2 availability is presented here. To this end, a gas-permeable polydimethylsiloxane microfluidic cultivation chip and a low-cost 3D-printed mini-incubator were successfully used to control O2 availability inside microfluidic growth chambers during time-lapse microscopy. Dissolved O2 was monitored by imaging the fluorescence lifetime of the O2-sensitive dye RTDP using FLIM microscopy. The acquired image-data stacks from biological experiments containing phase contrast and fluorescence intensity data were analyzed using in-house developed and open-source image-analysis tools. The resulting oxygen concentration could be dynamically controlled between 0% and 100%. The system was experimentally tested by culturing and analyzing an E. coli strain expressing green fluorescent protein as an indirect intracellular oxygen indicator. The presented system allows for innovative microbiological research on microorganisms and microbial ecology with single-cell resolution.

4.
FEMS Microbes ; 4: xtac030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333445

RESUMO

The expression of biosynthetic genes in bacterial hosts can enable access to high-value compounds, for which appropriate molecular genetic tools are essential. Therefore, we developed a toolbox of modular vectors, which facilitate chromosomal gene integration and expression in Pseudomonas putida KT2440. To this end, we designed an integrative sequence, allowing customisation regarding the modes of integration (random, at attTn7, or into the 16S rRNA gene), promoters, antibiotic resistance markers as well as fluorescent proteins and enzymes as transcription reporters. We thus established a toolbox of vectors carrying integrative sequences, designated as pYT series, of which we present 27 ready-to-use variants along with a set of strains equipped with unique 'landing pads' for directing a pYT interposon into one specific copy of the 16S rRNA gene. We used genes of the well-described violacein biosynthesis as reporter to showcase random Tn5-based chromosomal integration leading to constitutive expression and production of violacein and deoxyviolacein. Deoxyviolacein was likewise produced after gene integration into the 16S rRNA gene of rrn operons. Integration in the attTn7 site was used to characterise the suitability of different inducible promoters and successive strain development for the metabolically challenging production of mono-rhamnolipids. Finally, to establish arcyriaflavin A production in P. putida for the first time, we compared different integration and expression modes, revealing integration at attTn7 and expression with NagR/PnagAa to be most suitable. In summary, the new toolbox can be utilised for the rapid generation of various types of P. putida expression and production strains.

5.
Methods Mol Biol ; 2564: 143-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36107341

RESUMO

Flavin-based fluorescent proteins (FbFPs), a class of small fluorescent proteins derived from light-oxygen-voltage (LOV) domains, bind ubiquitous endogenous flavins as chromophores. Due to their unique properties, they can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents methodologies for in-depth characterization of the biochemical, spectroscopic, photophysical, and photochemical properties of FbFPs.


Assuntos
Dinitrocresóis , Flavinas , Flavinas/metabolismo , Oxigênio/metabolismo , Proteínas
6.
Front Bioeng Biotechnol ; 10: 902059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246361

RESUMO

Photocaged inducer molecules, especially photocaged isopropyl-ß-d-1-thiogalactopyranoside (cIPTG), are well-established optochemical tools for light-regulated gene expression and have been intensively applied in Escherichia coli and other bacteria including Corynebacterium glutamicum, Pseudomonas putida or Bacillus subtilis. In this study, we aimed to implement a light-mediated on-switch for target gene expression in the facultative anoxygenic phototroph Rhodobacter capsulatus by using different cIPTG variants under both phototrophic and non-phototrophic cultivation conditions. We could demonstrate that especially 6-nitropiperonyl-(NP)-cIPTG can be applied for light-mediated induction of target gene expression in this facultative phototrophic bacterium. Furthermore, we successfully applied the optochemical approach to induce the intrinsic carotenoid biosynthesis to showcase engineering of a cellular function. Photocaged IPTG thus represents a light-responsive tool, which offers various promising properties suitable for future applications in biology and biotechnology including automated multi-factorial control of cellular functions as well as optimization of production processes.

7.
Curr Opin Biotechnol ; 77: 102764, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35932511

RESUMO

With more than 80 000 compounds, terpenoids represent one of the largest classes of secondary metabolites naturally produced by various plants and other organisms. Owing to the tremendous structural diversity, they offer a wide range of properties relevant for biotechnological and pharmaceutical applications. In this context, heterologous terpenoid production in engineered microbial hosts represents an often cost-effective and eco-friendly way to make these valuable compounds industrially available. This review provides an overview of current strategies to employ and engineer oxygenic and anoxygenic phototrophic bacteria as alternative cell factories for sustainable terpenoid production. Besides terpenoid pathway engineering, the effects of different illumination strategies on terpenoid photoproduction are key elements in the latest studies.


Assuntos
Engenharia Metabólica , Terpenos , Bactérias/metabolismo , Plantas/metabolismo , Terpenos/metabolismo
8.
Methods Mol Biol ; 2379: 125-154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188660

RESUMO

Terpenes are one of the largest classes of secondary metabolites that occur in all kingdoms of life and offer diverse valuable properties for food and pharma industry including pleasant odor or taste as well as antimicrobial or anticancer activities. A multitude of terpene biosynthesis pathways are known, but their efficient biotechnological exploitation requires an adequate microorganism as host which can ideally provide an optimal supply with biosynthetic isoprene precursors. Rhodobacter capsulatus, a Gram-negative, facultative anaerobic, photosynthetic non-sulfur purple bacterium belonging to the α-proteobacteria represents such a host particularly suitable for terpene production. Here, we describe methods for the expression of terpene biosynthetic enzymes in R. capsulatus and the extraction of products for analysis. At the same time, we summarize the current strategies to adjust the biosynthetic precursor supply via isoprenoid biosynthetic pathways.


Assuntos
Rhodobacter capsulatus , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Fotossíntese , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Terpenos/metabolismo
9.
Chembiochem ; 23(1): e202100467, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34750949

RESUMO

Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.


Assuntos
Carboidratos/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Carboidratos/síntese química , Processos Fotoquímicos , Regiões Promotoras Genéticas/genética
10.
Microb Cell Fact ; 20(1): 174, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488765

RESUMO

BACKGROUND: Bacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh ß-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP. RESULTS: As proof of concept, the GFP11-tag was fused C-terminally to the E. coli ß-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4-12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity. CONCLUSION: Our results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas Recombinantes/biossíntese , Escherichia coli/genética , Glucuronidase/biossíntese
11.
J Biotechnol ; 338: 20-30, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237394

RESUMO

Terpenes constitute one of the largest groups of secondary metabolites that are used, for example, as food-additives, fragrances or pharmaceuticals. Due to the formation of an intracytoplasmic membrane system and an efficient intrinsic tetraterpene pathway, the phototrophic α-proteobacterium Rhodobacter capsulatus offers favorable properties for the production of hydrophobic terpenes. However, research efforts have largely focused on sesquiterpene production. Recently, we have developed modular tools allowing to engineer the biosynthesis of terpene precursors. These tools were now applied to boost the biosynthesis of the diterpene casbene, the triterpene squalene and the tetraterpene ß-carotene in R. capsulatus SB1003. Selected enzymes of the intrinsic isoprenoid pathway and the heterologous mevalonate (MVA) pathway were co-expressed together with the respective terpene synthases in various combinations. Remarkably, co-expression of genes ispA, idi and dxs enhanced the synthesis of casbene and ß-carotene. In contrast, co-expression of precursor biosynthetic genes with the squalene synthase from Arabidopsis thaliana reduced squalene titers. Therefore, we further employed four alternative pro- and eukaryotic squalene synthases. Here, the synthase from Methylococcus capsulatus enabled highest product levels of 90 mg/L squalene upon co-expression with ispA. In summary, we demonstrate the applicability of R. capsulatus for the heterologous production of diverse terpene classes and provide relevant insights for further development of such platforms.


Assuntos
Rhodobacter capsulatus , Triterpenos , Ácido Mevalônico , Rhodobacter capsulatus/genética , Esqualeno , Terpenos
12.
Microorganisms ; 9(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466643

RESUMO

Terpenoids constitute one of the largest and most diverse groups within the class of secondary metabolites, comprising over 80,000 compounds. They not only exhibit important functions in plant physiology but also have commercial potential in the biotechnological, pharmaceutical, and agricultural sectors due to their promising properties, including various bioactivities against pathogens, inflammations, and cancer. In this work, we therefore aimed to implement the plant sesquiterpenoid pathway leading to ß-caryophyllene in the heterologous host Rhodobacter capsulatus and achieved a maximum production of 139 ± 31 mg L-1 culture. As this sesquiterpene offers various beneficial anti-phytopathogenic activities, we evaluated the bioactivity of ß-caryophyllene and its oxygenated derivative ß-caryophyllene oxide against different phytopathogenic fungi. Here, both compounds significantly inhibited the growth of Sclerotinia sclerotiorum and Fusarium oxysporum by up to 40%, while growth of Alternaria brassicicola was only slightly affected, and Phoma lingam and Rhizoctonia solani were unaffected. At the same time, the compounds showed a promising low inhibitory profile for a variety of plant growth-promoting bacteria at suitable compound concentrations. Our observations thus give a first indication that ß-caryophyllene and ß-caryophyllene oxide are promising natural agents, which might be applicable for the management of certain plant pathogenic fungi in agricultural crop production.

13.
Chembiochem ; 22(3): 539-547, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32914927

RESUMO

Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non-invasive as well as easily tuneable. In the recent past, photo-responsive inducer molecules such as 6-nitropiperonyl-caged IPTG (NP-cIPTG) have been used as optochemical tools for Lac repressor-controlled microbial expression systems. To further expand the applicability of the versatile optochemical on-switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light-mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water-soluble cIPTG derivative proved to be particularly suitable for light-mediated gene expression in these alternative expression hosts.


Assuntos
Bacillus subtilis/genética , Repressores Lac/metabolismo , Luz , Pseudomonas putida/genética , Tiogalactosídeos/metabolismo , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Repressores Lac/química , Processos Fotoquímicos , Pseudomonas putida/metabolismo , Solubilidade , Tiogalactosídeos/química
14.
Mol Biol Evol ; 38(3): 819-837, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32931580

RESUMO

Light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlorophyllide oxidoreductase are evolutionary and structurally distinct enzymes that are essential for the synthesis of (bacterio)chlorophyll, the primary pigment needed for both anoxygenic and oxygenic photosynthesis. In contrast to the long-held hypothesis that LPORs are only present in oxygenic phototrophs, we recently identified a functional LPOR in the aerobic anoxygenic phototrophic bacterium (AAPB) Dinoroseobacter shibae and attributed its presence to a single horizontal gene transfer event from cyanobacteria. Here, we provide evidence for the more widespread presence of genuine LPOR enzymes in AAPBs. An exhaustive bioinformatics search identified 36 putative LPORs outside of oxygenic phototrophic bacteria (cyanobacteria) with the majority being AAPBs. Using in vitro and in vivo assays, we show that the large majority of the tested AAPB enzymes are genuine LPORs. Solution structural analyses, performed for two of the AAPB LPORs, revealed a globally conserved structure when compared with a well-characterized cyanobacterial LPOR. Phylogenetic analyses suggest that LPORs were transferred not only from cyanobacteria but also subsequently between proteobacteria and from proteobacteria to Gemmatimonadetes. Our study thus provides another interesting example for the complex evolutionary processes that govern the evolution of bacteria, involving multiple horizontal gene transfer events that likely occurred at different time points and involved different donors.


Assuntos
Evolução Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Proteobactérias/enzimologia , Proteobactérias/genética , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotossíntese , Filogenia , Rhodobacteraceae
15.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348829

RESUMO

Plant parasitic nematodes, including the beet cyst nematode Heterodera schachtii, constitute a devastating problem for crops worldwide. The limited availability of sustainable management options illustrates the need for new eco-friendly control means. Plant metabolites represent an invaluable source of active compounds for the discovery of such novel antagonistic agents. Here, we evaluated the impact of eight plant terpenoids on the H. schachtii parasitism of Arabidopsis thaliana. None of the metabolites affected the plant development (5 or 10 ppm). Nootkatone decreased the number of adult nematodes on A. thaliana to 50%, with the female nematodes being smaller compared to the control. In contrast, three other terpenoids increased the parasitism and/or female size. We discovered that nootkatone considerably decreased the number of nematodes that penetrated A. thaliana roots, but neither affected the nematode viability or attraction to plant roots, nor triggered the production of plant reactive oxygen species or changed the plant's sesquiterpene profile. However, we demonstrated that nootkatone led to a significant upregulation of defense-related genes involved in salicylic and jasmonic acid pathways. Our results indicate that nootkatone is a promising candidate to be developed into a novel plant protection agent acting as a stimulator of plant immunity against parasitic nematodes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Raízes de Plantas/imunologia , Sesquiterpenos Policíclicos/farmacologia , Tylenchoidea/crescimento & desenvolvimento , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Feminino , Doenças das Plantas/parasitologia , Extratos Vegetais/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Tylenchoidea/efeitos dos fármacos
16.
Biomacromolecules ; 21(12): 5067-5076, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33140635

RESUMO

Azulitox as a new fusion polypeptide with cancer cell specificity and phototoxicity was generated and is composed of a photosensitizer domain and the cell-penetrating peptide P28. The photosensitizer domain (EcFbFP) was derived from a bacterial blue-light receptor, which belongs to the family of light-oxygen-voltage proteins and produces reactive oxygen species (ROS) upon excitation. P28 is derived from the cupredoxin protein azurin that is known to specifically penetrate cancer cells and bind to the tumor suppressor protein p53. We show that the P28 domain specifically directs and translocates the fused photosensitizer into cancer cells. Under blue-light illumination, Azulitox significantly induced cytotoxicity. Compared to the extracellular application of EcFbFP, Azulitox caused death to about 90% of cells, as monitored by flow cytometry, which also directly correlated with the amount of ROS produced in the cells. Azulitox may open new avenues toward targeted polypeptide-photosensitizer-based photodynamic therapies with reduced systemic toxicity compared to conventional photosensitizers.


Assuntos
Antineoplásicos , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pseudomonas aeruginosa , Proteína Supressora de Tumor p53
17.
Microb Biotechnol ; 13(1): 250-262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31162833

RESUMO

Bacterial gene clusters, which represent a genetic treasure trove for secondary metabolite pathways, often need to be activated in a heterologous host to access the valuable biosynthetic products. We provide here a detailed protocol for the application of the yTREX 'gene cluster transplantation tool': Via yeast recombinational cloning, a gene cluster of interest can be cloned in the yTREX vector, which enables the robust conjugational transfer of the gene cluster to bacteria like Pseudomonas putida, and their subsequent transposon Tn5-based insertion into the host chromosome. Depending on the gene cluster architecture and chromosomal insertion site, the respective pathway genes can be transcribed effectively from a chromosomal promoter, thereby enabling the biosynthesis of a natural product. We describe workflows for the design of a gene cluster expression cassette, cloning of the cassette in the yTREX vector by yeast recombineering, and subsequent transfer and expression in P. putida. As an example for yTREX-based transplantation of a natural product biosynthesis, we provide details on the cloning and activation of the phenazine-1-carboxylic acid biosynthetic genes from Pseudomonas aeruginosa in P. putidaKT2440 as well as the use of ß-galactosidase-encoding lacZ as a reporter of production levels.


Assuntos
Pseudomonas putida , Clonagem Molecular , Elementos de DNA Transponíveis , Expressão Gênica , Família Multigênica , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética
18.
Front Microbiol ; 10: 1998, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555236

RESUMO

Sesquiterpenoids are a large class of natural compounds offering manifold properties valuable for food, cosmetics, agriculture, and pharma industry. Production in microorganisms is a sustainable approach to provide sesquiterpenoids for research and industrial use independent of their natural sources. This requires the functional transfer of the respective biocatalytic pathways in an adequate host microorganism offering a sufficient supply of precursors that is ideally adjusted to the individual demand of the recombinant biosynthesis route. The phototrophic purple bacterium Rhodobacter capsulatus offers unique physiological properties that are favorable for biosynthesis of hydrophobic terpenes. Under phototrophic conditions, it develops a large intracytoplasmic membrane suitable for hosting membrane-bound enzymes and metabolites of respective biosynthetic pathways. In addition, Rhodobacter harbors an intrinsic carotenoid biosynthesis that can be engineered toward the production of foreign terpenes. Here, we evaluate R. capsulatus as host for the production of plant sesquiterpenoids under phototrophic conditions using patchoulol and valencene as a proof of concept. The heterologous expression of patchoulol synthase PcPS from Pogostemon cablin as well as the valencene synthases CsVS from Citrus sinensis and CnVS from Callitropsis nootkatensis led to the production of the respective sesquiterpenoids in R. capsulatus. To analyze, if gradually adjustable formation of the key precursor farnesylpyrophosphate (FPP) is beneficial for sesquiterpene synthesis under phototrophic conditions, the intrinsic 1-deoxy-D-xylulose 5-phosphate (DXP) pathway genes as well as the heterologous mevalonate pathway genes were modularly expressed in various combinations. To this end, different plasmids and chromosomally integrated expression tools were developed harboring the strong and tightly controlled P nif promoter for heterologous gene expression. Notably, comparative studies identified a distinct combination of precursor biosynthetic genes as best-performing setup for each of the tested sesquiterpene synthases. In summary, we could demonstrate that R. capsulatus is a promising alternative platform organism that is suited for sustainable sesquiterpenoid formation under phototrophic cultivation conditions. A modular engineering of R. capsulatus strains via tailored co-expression of FPP biosynthetic genes further allowed adaptation of sesquiterpene precursor formation to its catalytic conversion by different plant terpene synthases.

19.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533368

RESUMO

Diseases caused by multi-drug resistant pathogens have become a global concern. Therefore, new approaches suitable for treating these bacteria are urgently needed. In this study, we analyzed genetically encoded photosensitizers (PS) related to the green fluorescent protein (GFP) or light-oxygen-voltage (LOV) photoreceptors for their exogenous applicability as light-triggered antimicrobial agents. Depending on their specific photophysical properties and photochemistry, these PSs can produce different toxic ROS (reactive oxygen species) such as O2•- and H2O2 via type-I, as well as 1O2 via type-II reaction in response to light. By using cell viability assays and microfluidics, we could demonstrate differences in the intracellular and extracellular phototoxicity of the applied PS. While intracellular expression and exogenous supply of GFP-related PSs resulted in a slow inactivation of E. coli and pathogenic Gram-negative and Gram-positive bacteria, illumination of LOV-based PSs such as the singlet oxygen photosensitizing protein SOPP3 resulted in a fast and homogeneous killing of these microbes. Furthermore, our data indicate that the ROS type and yield as well as the localization of the applied PS protein can strongly influence the antibacterial spectrum and efficacy. These findings open up new opportunities for photodynamic inactivation of pathogenic bacteria.


Assuntos
Anti-Infecciosos/farmacologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Proteínas Recombinantes/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biomarcadores , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Microfluídica/instrumentação , Microfluídica/métodos
20.
ACS Synth Biol ; 8(8): 1901-1912, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31298831

RESUMO

Ribosomal RNA (rRNA) operons have recently been identified as promising sites for chromosomal integration of genetic elements in Pseudomonas putida, a bacterium that has gained considerable popularity as a microbial cell factory. We have developed a tool for targeted integration of recombinant genes into the rRNA operons of various Pseudomonas strains, where the native context of the rRNA clusters enables effective transcription of heterologous genes. However, a sufficient translation of foreign mRNA  transcriptionally fused to rRNA required optimization of RNA secondary structures, which was achieved utilizing synthetic ribozymes and a bicistronic design. The generated tool further enabled the characterization of the six rRNA promoter units of P. putida S12 under different growth conditions. The presence of multiple, almost identical rRNA operons in Pseudomonas also allowed the integration of multiple copies of heterologous genetic elements. The integration of two expression cassettes and the resulting disruption of rRNA units only moderately affects growth rates, and the constructs were highly stable over more than 160 generations.


Assuntos
DNA Ribossômico/metabolismo , DNA Ribossômico/genética , Pseudomonas/genética , Pseudomonas/metabolismo , RNA Catalítico/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Biologia Sintética , Óperon de RNAr/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...