Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(2): 023905, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859038

RESUMO

We present the modifications, performance, and test of a diamond anvil cell for radio frequency dielectric spectroscopy studies of single crystals that can be used from room temperature down to 4 K and up to pressures of 5-6 GPa. Continuous frequency-dependent measurements between 5 Hz and 1 MHz can be performed with this modified pressure cell. The cell has an excellent performance with temperature-, frequency-, and pressure-independent stray capacitance of around 2 pF, enabling us to use relatively small samples with a weak dielectric response.

2.
Nano Lett ; 22(8): 3380-3384, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389652

RESUMO

We have studied the radio frequency dielectric response of a system consisting of separate polar water molecules periodically arranged in nanocages formed by the crystal lattice of the gemstone beryl. Below T = 20-30 K, quantum effects start to dominate the properties of the electric dipolar system as manifested by a crossover between the Curie-Weiss and the Barrett regimes in the temperature-dependent real dielectric permittivity ε'(T). When analyzing in detail the temperature evolution of the reciprocal permittivity (ε')-1 down to T ≈ 0.3 K and comparing it with the data obtained for conventional quantum paraelectrics, like SrTiO3, KTaO3, we discovered clear signatures of a quantum-critical behavior of the interacting water molecular dipoles: Between T = 6 and 14 K, the reciprocal permittivity follows a quadratic temperature dependence and displays a shallow minimum below 3 K. This is the first observation of "dielectric fingerprints" of quantum-critical phenomena in a paraelectric system of coupled point electric dipoles.

3.
J Endourol ; 36(2): 266-272, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314251

RESUMO

Context: Recently developed concepts for higher efficacy extracorporeal shockwave lithotripsy with low-pressure wide focus systems resulting in finer fragmentation of the calculi. Objective: To compare two different electromagnetic shockwave sources (low-pressure wide focus [Xinin Lithotripter, XL] vs high-pressure small focus [Siemens Lithoskop, SL]) by sound field measurements and in vitro fragmentation. Evidence Acquisition: The CS-2012A XX-ES lithotripter (self-focusing electromagnetic shockwave generator with concave spherical curved electrical coil; XL) was compared to the (SL) (electromagnetic generator with a flat electric coil with an acoustical lens). Different sound field measurements were performed using a fiber-optic hydrophone. Measurements at three different power settings (XL: 8.0, 9.3, and 10.3 kV and SL: Level 1, 5, and 8). Ten AST stones and 15 BegoStones (9.3 kV, Level 3) with a frequency of 90/minute (SL) and 20/minute (XL). Number of impulses to the first crack and for complete stone comminution (residual fragments <2 mm) was documented. Results: The median number of shockwaves for the first crack in AST stones with the XL was 12 (10-14) and 7 with the SL (6-9). Complete disintegration was accomplished after 815 (782-824) shockwaves with XL and 702 (688-712) with SL. The difference was not statistically significant. The median number of shockwaves to produce the first crack in BegoStones was 524 (504-542) with XL and only 151 (137-161) with SL. Numbers of shockwaves for complete disintegration did not differ significantly (XL: 2518 vs SL: 2287). Using a wide focus with low pressure shows more homogeneous disintegration. Conclusion: Two stone models showed significant differences regarding form and time of the initial fragmentation. Impulses for stone comminution did not differ significantly. The advantages of a low-pressure wide-focus system include minimal trauma and a homogeneous fragment size but is more time consuming. High-pressure small-focus systems are clinically effective.


Assuntos
Cálculos Renais , Litotripsia , Fenômenos Eletromagnéticos , Tecnologia de Fibra Óptica , Humanos , Cálculos Renais/terapia , Litotripsia/métodos , Imagens de Fantasmas
4.
Science ; 372(6539): 276-279, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859031

RESUMO

Geometrical frustration, quantum entanglement, and disorder may prevent long-range ordering of localized spins with strong exchange interactions, resulting in an exotic state of matter. κ-(BEDT-TTF)2Cu2(CN)3 is considered the prime candidate for this elusive quantum spin liquid state, but its ground-state properties remain puzzling. We present a multifrequency electron spin resonance (ESR) study down to millikelvin temperatures, revealing a rapid drop of the spin susceptibility at 6 kelvin. This opening of a spin gap, accompanied by structural modifications, is consistent with the formation of a valence bond solid ground state. We identify an impurity contribution to the ESR response that becomes dominant when the intrinsic spins form singlets. Probing the electrons directly manifests the pivotal role of defects for the low-energy properties of quantum spin systems without magnetic order.

5.
Nat Commun ; 12(1): 1571, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692366

RESUMO

Landau suggested that the low-temperature properties of metals can be understood in terms of long-lived quasiparticles with all complex interactions included in Fermi-liquid parameters, such as the effective mass m⋆. Despite its wide applicability, electronic transport in bad or strange metals and unconventional superconductors is controversially discussed towards a possible collapse of the quasiparticle concept. Here we explore the electrodynamic response of correlated metals at half filling for varying correlation strength upon approaching a Mott insulator. We reveal persistent Fermi-liquid behavior with pronounced quadratic dependences of the optical scattering rate on temperature and frequency, along with a puzzling elastic contribution to relaxation. The strong increase of the resistivity beyond the Ioffe-Regel-Mott limit is accompanied by a 'displaced Drude peak' in the optical conductivity. Our results, supported by a theoretical model for the optical response, demonstrate the emergence of a bad metal from resilient quasiparticles that are subject to dynamical localization and dissolve near the Mott transition.

6.
Sci Rep ; 10(1): 18329, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110105

RESUMO

We resolve the real-time coherent rotational motion of isolated water molecules encapsulated in fullerene-C60 cages by time-domain terahertz (THz) spectroscopy. We employ single-cycle THz pulses to excite the low-frequency rotational motion of water and measure the subsequent coherent emission of electromagnetic waves by water molecules. At temperatures below ~ 100 K, C60 lattice vibrational damping is mitigated and the quantum dynamics of confined water are resolved with a markedly long rotational coherence, extended beyond 10 ps. The observed rotational transitions agree well with low-frequency rotational dynamics of single water molecules in the gas phase. However, some additional spectral features with their major contribution at ~2.26 THz are also observed which may indicate interaction between water rotation and the C60 lattice phonons. We also resolve the real-time change of the emission pattern of water after a sudden cooling to 4 K, signifying the conversion of ortho-water to para-water over the course of 10s hours. The observed long coherent rotational dynamics of isolated water molecules confined in C60 makes this system an attractive candidate for future quantum technology.

7.
Sci Rep ; 10(1): 11320, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647228

RESUMO

The most common species in liquid water, next to neutral [Formula: see text] molecules, are the [Formula: see text] and [Formula: see text] ions. In a dynamic picture, their exact concentrations depend on the time scale at which these are probed. Here, using a spectral-weight analysis, we experimentally resolve the fingerprints of the elusive fluctuations-born short-living [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] ions in the IR spectra of light ([Formula: see text]), heavy ([Formula: see text]), and semi-heavy (HDO) water. We find that short-living ions, with concentrations reaching [Formula: see text] of the content of water molecules, coexist with long-living pH-active ions on the picosecond timescale, thus making liquid water an effective ionic liquid in femtochemistry.

8.
Rev Sci Instrum ; 91(5): 054702, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486720

RESUMO

Dielectric measurements on insulating materials at cryogenic temperatures can be challenging, depending on the frequency and temperature ranges of interest. We present a technique to study the dielectric properties of bulk dielectrics at GHz frequencies. A superconducting coplanar Nb resonator is deposited directly on the material of interest, and this resonator is then probed in distant-flip-chip geometry with a microwave feedline on a separate chip. Evaluating several harmonics of the resonator gives access to various probing frequencies in the present studies up to 20 GHz. We demonstrate the technique on three different materials (MgO, LaAlO3, and TiO2), at temperatures between 1.4 K and 7 K.

9.
Phys Rev Lett ; 124(13): 136402, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302162

RESUMO

Employing high-pressure infrared spectroscopy we unveil the Weyl semimetal phase of elemental Te and its topological properties. The linear frequency dependence of the optical conductivity provides clear evidence for metallization of trigonal tellurium (Te-I) and the linear band dispersion above 3.0 GPa. This semimetallic Weyl phase can be tuned by increasing pressure further: a kink separates two linear regimes in the optical conductivity (at 3.7 GPa), a signature proposed for Type-II Weyl semimetals with tilted cones; this however reveals a different origin in trigonal tellurium. Our density-functional calculations do not reveal any significant tilting and suggest that Te-I remains in the Type-I Weyl phase, but with two valence bands in the vicinity of the Fermi level. Their interplay gives rise to the peculiar optical conductivity behavior with more than one linear regime. Pressure above 4.3 GPa stabilizes the more complex Te-II and Te-III polymorphs, which are robust metals.

10.
Rev Sci Instrum ; 91(2): 025106, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113448

RESUMO

We present an instrument to perform frequency-domain electron spin resonance experiments that is based on coplanar waveguides and field modulation. A large parameter space in frequency (up to 25 GHz), magnetic field (up to 8 T), and temperature (down to 1.6 K) is accessible. We performed experiments on DPPH (2,2-diphenyl-1-picrylhydrazyl) as a standard to calibrate the field modulation as well as on a carbon fiber sample to estimate the overall sensitivity of the instruments. Spectra of a ruby sample in a broad frequency and field range at cryogenic temperatures are recorded with and without field modulation. The comparison reveals the improved signal-to-noise ratio achieved by field modulation.

11.
Adv Sci (Weinh) ; 7(1): 1902409, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31921571

RESUMO

Accurate determination of the intrinsic electronic structure of thermoelectric materials is a prerequisite for utilizing an electronic band engineering strategy to improve their thermoelectric performance. Herein, with high-resolution angle-resolved photoemission spectroscopy (ARPES), the intrinsic electronic structure of the 3D half-Heusler thermoelectric material ZrNiSn is revealed. An unexpectedly large intrinsic bandgap is directly observed by ARPES and is further confirmed by electrical and optical measurements and first-principles calculations. Moreover, a large anisotropic conduction band with an anisotropic factor of 6 is identified by ARPES and attributed to be one of the most important reasons leading to the high thermoelectric performance of ZrNiSn. These successful findings rely on the grown high-quality single crystals, which have fewer Ni interstitial defects and negligible in-gap states on the electronic structure. This work demonstrates a realistic paradigm to investigate the electronic structure of 3D solid materials by using ARPES and provides new insights into the intrinsic electronic structure of the half-Heusler system benefiting further optimization of thermoelectric performance.

12.
Rev Sci Instrum ; 90(11): 114701, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779383

RESUMO

We present an experimental approach for cryogenic dielectric measurements on ultrathin insulating films. Based on a coplanar microwave waveguide design, we implement superconducting quarter-wave resonators with inductive coupling, which allows us to determine the real part ε1 of the dielectric function at gigahertz frequencies and sample thicknesses down to a few nanometers. We perform simulations to optimize resonator coupling and sensitivity, and we demonstrate the possibility to quantify ε1 with a conformal mapping technique in a wide sample-thickness and ε1-regime. Experimentally, we determine ε1 for various thin-film samples (photoresist, MgF2, and SiO2) in the thickness regime of nanometer up to micrometer. We find good correspondence with nominative values, and we identify the precision of the film thickness as our predominant error source. Additionally, we present a temperature-dependent measurement for a SrTiO3 bulk sample, using an in situ reference method to compensate for the temperature dependence of the superconducting resonator properties.

13.
ACS Appl Mater Interfaces ; 11(21): 19647-19653, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31055915

RESUMO

Antimony (Sb) heavily-doped germanium (Ge)-on-silicon (Si) epitaxial films are investigated as mid-infrared (MIR) plasmonic materials. Structural, electrical, and optical properties have been improved by proper choice of dopant species (i.e., Sb) and optimization of the growth parameters (i.e., Sb flux and substrate temperature). The increased electron conductivity can be attributed to the elevated carrier concentration (1.5 × 1020 cm-3) and carrier mobility (224 cm2 V-1 s-1) in the Sb-doped Ge epilayers. The measured MIR reflectivities of the Sb-doped Ge films show free-carrier-dependent properties, which leads to tunable real and imaginary parts of permittivities. Localized surface plasmon polaritons of the bowtie antennas fabricated from the Sb-doped Ge films are demonstrated. The fabricated antennas can provide signal enhancement for the molecular vibrational spectroscopy when these vibrational lines are spectrally in proximity to the localized plasmon resonance. These CMOS-compatible Sb-doped Ge epilayers offer a platform to study the interaction of MIR plasmon with nanostructures on chips.

14.
Rev Sci Instrum ; 90(3): 034704, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927800

RESUMO

Broadband microwave spectroscopy can probe material properties in wide spectral and temperature ranges. The quality of such measurements crucially depends on the calibration, which also removes from the obtained spectra signatures of standing waves. Here we consider cryogenic Corbino-type reflection measurements on superconductors close to the critical temperature. We show that the non-linear sample response, which relates to sample heating, can lead to strong signatures of standing waves even in a well-calibrated Corbino spectrometer. We demonstrate our findings with microwave measurements as a function of frequency, power, and temperature and for different lengths of the microwave transmission line. Finally, we note such non-linear effects beyond the case of superconductors by probing a VO2 thin film at the insulator-metal transition.

15.
J Phys Condens Matter ; 31(15): 155601, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30669131

RESUMO

We report a detailed structural and spectroscopic study of the 1D 2:1 cation radical salt (tTTF)2ClO4, where tTTF = trimethylenetetrathiafulvalene, which exhibits a semiconductor-semiconductor phase transition at ca. T = 137 K. Crystal structures are determined above and below the transition; the tTTF molecules in stacks are grouped into weakly interacting tetramers. The reorganization of tTTF stacks is accompanied with an order-disorder transition in anion sublattice. Polarized infrared and Raman spectra of (tTTF)2ClO4 are measured in the broad frequency range as a function of the temperature (10-293 K). The structural and vibrational features are investigated to elucidate the origin of the semiconductor-semiconductor phase transition. We discuss the electron-intramolecular vibration coupling effects in the vibrational spectra of (tTTF)2ClO4 and identify signatures of high- and low-temperature states of charge localization in the tetramerized system. Both the C=C and C-S stretching modes of tTTF give evidence of strong charge distribution fluctuations in conducting stacks for T > 137 K, which are responsible for the appearance of molecules with charge +1e, and charge localization in tTTF tetramers for T < 137 K. The uniqueness of the salt (tTTF)2ClO4 in comparison with other tetramerized 1D systems is discussed.

16.
Phys Rev Lett ; 120(23): 237002, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932713

RESUMO

SrTiO_{3} exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature T_{c}≈0.4 K. Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO_{3} with a charge carrier concentration from 0.3 to 2.2×10^{20} cm^{-3}, covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO_{3}. Furthermore, we determine T_{c}, 2Δ, and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.

17.
J Phys Condens Matter ; 30(20): 203001, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29692367

RESUMO

Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds [Formula: see text]-EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.

18.
J Opt Soc Am A Opt Image Sci Vis ; 35(2): 301-308, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400879

RESUMO

We describe a general method to disclose the information hidden in Mueller matrices experimentally obtained from depolarizing samples. Although spectroscopic Mueller-matrix ellipsometry allows for a model-free characterization of inhomogeneous samples, i.e., independently from any assumption on the sample structure, the interpretation of the obtained results is often challenging. The proposed method combines three different decomposition techniques applied to the measured Mueller matrices in transmission and reflection of granular thin films with different thicknesses and densities. We demonstrate that the comparative analysis of the respective differential-, product-, and sum-decomposition of the Mueller matrices, together with correlation effects and the visualization as a Poincaré sphere, reveals the particular underlying physical processes of depolarization. As an example, we apply this method on granular BaSO4 thin films. This method is general and can be applied to a wide variety of intrinsically inhomogeneous materials with applications in physics, industry, biology, or medicine.

19.
Plasmonics ; 12(5): 1381-1390, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983227

RESUMO

The geometrical arrangement of metallic nanoparticles plays a crucial role on the optical response of nanoplasmonic samples due to particle-particle interactions. In this work, large-area, two-dimensional meta-glasses (random arrangements) and meta-crystals (periodic arrangements) made of identical metallic nanoparticles are investigated for three different particle densities of 5, 10, and 15 discs/µm2. A direct comparison between random and periodically ordered arrays is presented. The comparison clearly shows that the particle density has the largest influence on the extinction spectra for both periodic and random samples, and that for equal densities, the optical response away from diffraction effects is strikingly similar in both cases. The role of the radial density function and minimum particle distance is also determined. This study elucidates the role of the particle-particle interactions on the response of plasmonic nanoparticles and indicates how to control position and shape of the plasmonic resonance.

20.
J Chem Phys ; 147(6): 064503, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810750

RESUMO

We explore the nature of the metal-insulator transition in the two-dimensional organic compound ß″-(BEDT-TTF)2Hg(SCN)2Cl by x-ray, electrical transport, ESR, Raman, and infrared investigations. Magnetic and vibrational spectroscopy concurrently reveal a gradual dimerization along the stacking direction (a-b), setting in already at the crossover temperature of 150 K from the metallic to the insulating state. A spin gap of Δσ=47 meV is extracted. From the activated resistivity behavior below T = 55 K, a charge gap of Δρ=60 meV is derived. At TCO = 72 K, the C=C vibrational modes reveal the development of a charge-ordered state with a charge disproportionation of 2δρ=0.34e. In addition to a slight structural dimerization, charge-order causes stripes most likely perpendicular to the stacks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...