Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(214): 20240008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715319

RESUMO

Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity. Nevertheless, recent studies have questioned this view, suggesting that cell wall elasticity sets the growth rate or that uptake of water is limiting for plant growth. To assess these issues, we developed a microfluidic device to quantify the growth rates, elastic properties and hydraulic conductivity of individual Marchantia polymorpha plants in a controlled environment with a high throughput. We characterized the effect of osmotic treatment and abscisic acid on growth and hydromechanical properties. Overall, the instantaneous growth rate of individuals is correlated with both bulk elastic modulus and hydraulic conductivity. Our results are consistent with a framework in which the growth rate is determined primarily by the elasticity of the wall and its remodelling, and secondarily by hydraulic conductivity. Accordingly, the coupling between the chemistry of the cell wall and the hydromechanics of the cell appears as key to set growth patterns during morphogenesis.


Assuntos
Parede Celular , Parede Celular/fisiologia , Marchantia/crescimento & desenvolvimento , Marchantia/fisiologia , Ácido Abscísico/metabolismo , Modelos Biológicos , Fenômenos Biomecânicos , Desenvolvimento Vegetal/fisiologia
2.
J Cell Sci ; 135(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326245

RESUMO

The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.


Assuntos
Parede Celular , Células Vegetais , Parede Celular/fisiologia , Morfogênese , Estresse Mecânico , Biofísica
3.
Hortic Res ; 8(1): 206, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593779

RESUMO

Sclareol, an antifungal specialized metabolite produced by clary sage, Salvia sclarea, is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide. Sclareol is mainly produced in clary sage flower calyces; however, the cellular localization of the sclareol biosynthesis remains unknown. To elucidate the site of sclareol biosynthesis, we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging (LDI-FTICR-MSI) and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes (GTs). We showed that sclareol specifically accumulates in GTs' gland cells in which sclareol biosynthesis genes are strongly expressed. We next isolated a glabrous beardless mutant and demonstrate that more than 90% of the sclareol is produced by the large capitate GTs. Feeding experiments, using 1-13C-glucose, and specific enzyme inhibitors further revealed that the methylerythritol-phosphate (MEP) biosynthetic pathway is the main source of isopentenyl diphosphate (IPP) precursor used for the biosynthesis of sclareol. Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.

4.
PLoS One ; 16(7): e0248954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288908

RESUMO

A road-map of the genetic and phenotypic diversities in both crops and their wild related species can help identifying valuable genetic resources for further crop breeding. The clary sage (Salvia sclarea L.), a perfume, medicinal and aromatic plant, is used for sclareol production and ornamental purposes. Despite its wide use in the field of cosmetics, the phenotypic and genetic diversity of wild and cultivated clary sages remains to be explored. We characterized the genetic and phenotypic variation of a collection of six wild S. sclarea populations from Croatia, sampled along an altitudinal gradient, and, of populations of three S. sclarea cultivars. We showed low level of genetic diversity for the two S. sclarea traditional cultivars used for essential oil production and for ornamental purposes, respectively. In contrast, a recent cultivar resulting from new breeding methods, which involve hybridizations among several genotypes rather than traditional recurrent selection and self-crosses over time, showed high genetic diversity. We also observed a marked phenotypic differentiation for the ornamental clary sage compared with other cultivated and wild clary sages. Instead, the two cultivars used for essential oil production, a traditional and a recent one, respectively, were not phenotypically differentiated from the wild Croatian populations. Our results also featured some wild populations with high sclareol content and early-flowering phenotypes as good candidates for future breeding programs. This study opens up perspectives for basic research aiming at understanding the impact of breeding methods on clary sage evolution, and highlights interesting avenues for clary breeding programs.


Assuntos
Variação Biológica da População , Variação Genética , Perfumes , Melhoramento Vegetal , Salvia/genética , Óleos Voláteis
5.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878190

RESUMO

Tomato cell wall-associated kinase 1 (SlWAK1) has only been studied in biotic stress response and hence its function in abiotic stress remains unknown. In a screening under salinity of an insertional mutant collection of tomato (Solanum lycopersicum L.), a mutant exhibiting lower degree of leaf chlorosis than wild type (WT) together with reduced leaf Na+ accumulation was selected. Genetic analysis of the mutation revealed that a single T-DNA insertion in the SlWAK1 gene was responsible of the mutant phenotype. Slwak1 null mutant reduced its shoot growth compared with WT, despite its improved Na+ homeostasis. SlWAK1 disruption affected osmotic homeostasis, as leaf water content was lower in mutant than in WT under salt stress. In addition, Slwak1 altered the source-sink balance under salinity, by increasing sucrose content in roots. Finally, a significant fruit yield reduction was found in Slwak1 vs. WT under long-term salt stress, mainly due to lower fruit weight. Our results show that disruption of SlWAK1 induces a higher sucrose transport from source leaf to sink root, negatively affecting fruit, the main sink at adult stage.


Assuntos
Regulação da Expressão Gênica de Plantas , Homeostase , Osmose , Proteínas de Plantas/metabolismo , Estresse Salino , Tolerância ao Sal , Solanum lycopersicum/fisiologia , Parede Celular/química , Solanum lycopersicum/efeitos dos fármacos , Fatores de Transcrição/metabolismo
6.
Trends Plant Sci ; 25(5): 477-487, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31983619

RESUMO

Plant glandular trichomes are epidermal secretory structures producing various specialized metabolites. These metabolites are involved in plant adaptation to its environment and many of them have remarkable properties exploited by fragrance, flavor, and pharmaceutical industries. The identification of genes controlling glandular trichome development is of high interest to understand how plants produce specialized metabolites. Our knowledge about this developmental process is still limited, but genes controlling glandular trichome initiation and morphogenesis have recently been identified. In particular, R2R3-MYB and HD-ZIP IV transcription factors appear to play essential roles in glandular trichome initiation in Artemisia annua and tomato. In this review, we focus on the results obtained in these two species and we propose genetic regulation models integrating these data.


Assuntos
Artemisia annua , Solanum lycopersicum , Artemisia annua/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/genética
7.
Elife ; 72018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30192741

RESUMO

DE-ETIOLATED 1 (DET1) is an evolutionarily conserved component of the ubiquitination machinery that mediates the destabilization of key regulators of cell differentiation and proliferation in multicellular organisms. In this study, we provide evidence from Arabidopsis that DET1 is essential for the regulation of histone H2B monoubiquitination (H2Bub) over most genes by controlling the stability of a deubiquitination module (DUBm). In contrast with yeast and metazoan DUB modules that are associated with the large SAGA complex, the Arabidopsis DUBm only comprises three proteins (hereafter named SGF11, ENY2 and UBP22) and appears to act independently as a major H2Bub deubiquitinase activity. Our study further unveils that DET1-DDB1-Associated-1 (DDA1) protein interacts with SGF11 in vivo, linking the DET1 complex to light-dependent ubiquitin-mediated proteolytic degradation of the DUBm. Collectively, these findings uncover a signaling path controlling DUBm availability, potentially adjusting H2Bub turnover capacity to the cell transcriptional status.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Homeostase , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Ubiquitinação , Sequência de Aminoácidos , Arabidopsis/genética , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intracelular , Luz , Mutação/genética , Fases de Leitura Aberta/genética , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Plant Physiol ; 176(2): 1676-1693, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229696

RESUMO

Characterization of a new tomato (Solanum lycopersicum) T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is required to maintain a proper low Na+/Ca2+ ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na+ compartmentalization (i.e. Na+/H+ EXCHANGERs, SALT OVERLY SENSITIVE, HIGH-AFFINITY K+ TRANSPORTER 1;2, H+-pyrophosphatase AVP1 [SlAVP1] and V-ATPase [SlVHA-A1]) supported a reduced capacity to accumulate Na+ in Slcbl10 mutant leaves, which resulted in a lower uploading of Na+ from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca2+ fluxes to the vacuole, showed abnormal expression in Slcbl10 plants indicating an impaired Ca2+ release from vacuole. Additionally, complementation assay revealed that SlCBL10 is a true ortholog of the Arabidopsis (Arabidopsis thaliana) CBL10 gene, supporting that the essential function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 mediates salt tolerance by regulating Na+ and Ca2+ fluxes in the vacuole, cooperating with the vacuolar cation channel SlTPC1 and the two vacuolar H+-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential targets of SlCBL10.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Solanum lycopersicum/genética , Calcineurina/genética , Homeostase , Solanum lycopersicum/fisiologia , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Estresse Salino , Tolerância ao Sal , Trocadores de Sódio-Hidrogênio/genética , Vacúolos/metabolismo
9.
Plant Cell ; 28(9): 2043-2059, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27531226

RESUMO

In eukaryotes, DNA repair pathways help to maintain genome integrity and epigenomic patterns. However, the factors at the nexus of DNA repair and chromatin modification/remodeling remain poorly characterized. Here, we uncover a previously unrecognized interplay between the DNA repair factor DNA DAMAGE BINDING PROTEIN2 (DDB2) and the DNA methylation machinery in Arabidopsis thaliana Loss-of-function mutation in DDB2 leads to genome-wide DNA methylation alterations. Genetic and biochemical evidence indicate that at many repeat loci, DDB2 influences de novo DNA methylation by interacting with ARGONAUTE4 and by controlling the local abundance of 24-nucleotide short interfering RNAs (siRNAs). We also show that DDB2 regulates active DNA demethylation mediated by REPRESSOR OF SILENCING1 and DEMETER LIKE3. Together, these findings reveal a role for the DNA repair factor DDB2 in shaping the Arabidopsis DNA methylation landscape in the absence of applied genotoxic stress.

10.
Plant Cell ; 24(1): 178-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22286137

RESUMO

Land plant cells assemble microtubule arrays without a conspicuous microtubule organizing center like a centrosome. In Arabidopsis thaliana, the TONNEAU1 (TON1) proteins, which share similarity with FOP, a human centrosomal protein, are essential for microtubule organization at the cortex. We have identified a novel superfamily of 34 proteins conserved in land plants, the TON1 Recruiting Motif (TRM) proteins, which share six short conserved motifs, including a TON1-interacting motif present in all TRMs. An archetypal member of this family, TRM1, is a microtubule-associated protein that localizes to cortical microtubules and binds microtubules in vitro. Not all TRM proteins can bind microtubules, suggesting a diversity of functions for this family. In addition, we show that TRM1 interacts in vivo with TON1 and is able to target TON1 to cortical microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible for FOP recruitment at the centrosome. Moreover, we found that TON1 can interact with the human CAP350 M2 motif in yeast. Taken together, our results suggest conservation of eukaryotic centrosomal components in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunoprecipitação , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica
11.
EMBO J ; 30(10): 1928-38, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21487388

RESUMO

Post-translational modification of histones and DNA methylation are important components of chromatin-level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin-based regulatory mechanisms in plants.


Assuntos
Arabidopsis/fisiologia , Cromatina/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromossomos/metabolismo , Metilação de DNA , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
12.
Plant J ; 63(3): 392-404, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20487384

RESUMO

Obligate photoautotrophs such as plants must capture energy from sunlight and are therefore exposed to the damaging collateral effects of ultraviolet (UV) irradiation, especially on DNA. Here we investigated the interconnection between light signaling and DNA repair, two concomitant pathways during photomorphogenesis, the developmental transition associated with the first light exposure. It is shown that combination of an enhanced sunscreen effect and photoreactivation confers a greater level of tolerance to damaging UV-C doses in the constitutive photomorphogenic de-etiolated1-1 (det1--1) Arabidopsis mutant. In darkness, expression of the PHR1 and UVR3 photolyase genes, responsible for photoreactivation, is maintained at a basal level through the positive action of HY5 and HYH photomorphogenesis-promoting transcription factors and the repressive effects of DET1 and COP1. Upon light exposure, HY5 and HYH activate PHR1 gene expression while the constitutively expressed nuclear-localized DET1 protein exerts a strong inhibitory effect. Altogether, the data presented indicate a dual role for DET1 in controlling expression of light-responsive and DNA repair genes, and describe more precisely the contribution of photomorphogenic regulators in the control of light-dependent DNA repair.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carbono-Carbono Liases/genética , Genes de Plantas , Fatores de Transcrição/genética , Raios Ultravioleta , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Dano ao DNA , Reparo do DNA , Transdução de Sinais
13.
Traffic ; 11(7): 899-911, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20406420

RESUMO

In Salmonella-infected cells, the bacterial effector SifA forms a functional complex with the eukaryotic protein SKIP (SifA and kinesin-interacting protein). The lack of either partner has important consequences on the intracellular fate and on the virulence of this pathogen. In addition to SifA, SKIP binds the microtubule-based motor kinesin-1. Yet the absence of SifA or SKIP results in an unusual accumulation of kinesin-1 on the bacterial vacuolar membrane. To understand this apparent contradiction, we investigated the interaction between SKIP and kinesin-1 and the function of this complex. We show that the C-terminal RUN (RPIP8, UNC-14 and NESCA) domain of SKIP interacted specifically with the tetratricopeptide repeat (TPR) domain of the kinesin light chain. Overexpression of SKIP induced a microtubule- and kinesin-1-dependent anterograde movement of late endosomal/lysosomal compartments. In infected cells, SifA contributed to the fission of vesicles from the bacterial vacuole and the SifA/SKIP complex was required for the formation and/or the anterograde transport of kinesin-1-enriched vesicles. These observations reflect the role of SKIP as a linker and/or an activator for kinesin-1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Bactérias/metabolismo , Glicoproteínas/metabolismo , Cinesinas/metabolismo , Salmonella/patogenicidade , Vacúolos/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Salmonella/metabolismo , Infecções por Salmonella/metabolismo , Vacúolos/microbiologia , Virulência , Fatores de Virulência/metabolismo
14.
J Biol Chem ; 284(46): 31992-2001, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19759393

RESUMO

In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Western Blotting , Imunofluorescência , Genes Dominantes , Células HeLa , Humanos , Imunoprecipitação , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Microinjeções , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fuso Acromático
15.
Plant Cell ; 20(8): 2146-59, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18757558

RESUMO

Plant cells have specific microtubule structures involved in cell division and elongation. The tonneau1 (ton1) mutant of Arabidopsis thaliana displays drastic defects in morphogenesis, positioning of division planes, and cellular organization. These are primarily caused by dysfunction of the cortical cytoskeleton and absence of the preprophase band of microtubules. Characterization of the ton1 insertional mutant reveals complex chromosomal rearrangements leading to simultaneous disruption of two highly similar genes in tandem, TON1a and TON1b. TON1 proteins are conserved in land plants and share sequence motifs with human centrosomal proteins. The TON1 protein associates with soluble and microsomal fractions of Arabidopsis cells, and a green fluorescent protein-TON1 fusion labels cortical cytoskeletal structures, including the preprophase band and the interphase cortical array. A yeast two-hybrid screen identified Arabidopsis centrin as a potential TON1 partner. This interaction was confirmed both in vitro and in plant cells. The similarity of TON1 with centrosomal proteins and its interaction with centrin, another key component of microtubule organizing centers, suggests that functions involved in the organization of microtubule arrays by the centrosome were conserved across the evolutionary divergence between plants and animals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Imunofluorescência , Regulação da Expressão Gênica de Plantas , Proteínas Associadas aos Microtúbulos/classificação , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
16.
J Biol Chem ; 280(9): 8221-8, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15611082

RESUMO

RhBG is a nonerythroid member of the Rhesus (Rh) protein family, mainly expressed in the kidney and belonging to the Amt/Mep/Rh superfamily of ammonium transporters. The epithelial expression of renal RhBG is restricted to the basolateral membrane of the connecting tubule and collecting duct cells. We report here that sorting and anchoring of RhBG to the basolateral plasma membrane require a cis-tyrosine-based signal and an association with ankyrin-G, respectively. First, we show by using a model of polarized epithelial Madin-Darby canine kidney cells that the targeting of transfected RhBG depends on a YED motif localized in the cytoplasmic C terminus of the protein. Second, we reveal by yeast two-hybrid analysis a direct interaction between an FLD determinant in the cytoplasmic C-terminal tail of RhBG and the third and fourth repeat domains of ankyrin-G. The biological relevance of this interaction is supported by two observations. (i) RhBG and ankyrin-G were colocalized in vivo in the basolateral domain of epithelial cells from the distal nephron by immunohistochemistry on kidney sections. (ii) The disruption of the FLD-binding motif impaired the membrane expression of RhBG leading to retention on cytoplasmic structures in transfected Madin-Darby canine kidney cells. Mutation of both targeting signal and ankyrin-G-binding site resulted in the same cell surface but nonpolarized expression pattern as observed for the protein mutated on the targeting signal alone, suggesting the existence of a close relationship between sorting and anchoring of RhBG to the basolateral domain of epithelial cells.


Assuntos
Anquirinas/fisiologia , Células Epiteliais/citologia , Glicoproteínas/fisiologia , Rim/citologia , Proteínas de Membrana Transportadoras/fisiologia , Tirosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anquirinas/química , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Primers do DNA/química , DNA Complementar/metabolismo , Cães , Citometria de Fluxo , Proteínas Fúngicas/metabolismo , Vetores Genéticos , Glicoproteínas/química , Humanos , Imuno-Histoquímica , Rim/metabolismo , Proteínas de Membrana Transportadoras/química , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese , Mutação , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...