Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890996

RESUMO

The sensitive detection of harmful gases, in particular nitrogen dioxide, is very important for our health and environment protection. Therefore, many papers on sensor materials used for NO2 detection have been published in recent years. Materials based on graphene and reduced graphene oxide deserve special attention, as they exhibit excellent sensor properties compared to the other materials. In this paper, we present the most recent advances in rGO hybrid materials developed for NO2 detection. We discuss their properties and, in particular, the mechanism of their interaction with NO2. We also present current problems occuring in this field.


Assuntos
Grafite , Gases , Grafite/química , Dióxido de Nitrogênio
2.
Materials (Basel) ; 14(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562112

RESUMO

In this paper, various graphite oxide (GO) and reduced graphene oxide (rGO) preparation methods are analyzed. The obtained materials differed in their properties, including (among others) their oxygen contents. The chemical and structural properties of graphite, graphite oxides, and reduced graphene oxides were previously investigated using Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). In this paper, hierarchical clustering analysis (HCA) and analysis of variance (ANOVA) were used to trace the directions of changes of the selected parameters relative to a preparation method of such oxides. We showed that the oxidation methods affected the physicochemical properties of the final products. The aim of the research was the statistical analysis of the selected properties in order to use this information to design graphene oxide materials with properties relevant for specific applications (i.e., in gas sensors).

3.
Sensors (Basel) ; 20(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503203

RESUMO

: In this study, the sensitivity of reduced graphene oxide structures (rGO) to the action of selected gases (especially hydrogen, but also nitrogen dioxide and ammonia) was examined. Two sensing structures, based on rGO structures, obtained by different methods of oxidation (the modified Hummers, and the modified Tour's method respectively), were investigated. We show here that the method used for the oxidation of rGO influences the sensitivity of the sensing structure during contact with various gaseous atmospheres. We performed our experiments in the atmosphere, containing hydrogen in a concentration range from 0 to 4% in nitrogen or synthetic air, both in dry and wet conditions. The temperature range was from 50 °C to 190 °C. Finally, we checked how the resistance of the samples changes when the other gases (NO2, NH3) appear in tested gas mixtures. The gas investigations were supplemented by the characterization of rGOs materials using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 sorption method.

4.
Materials (Basel) ; 11(7)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29933564

RESUMO

In this paper, the influences of the graphite precursor and the oxidation method on the resulting reduced graphene oxide (especially its composition and morphology) are shown. Three types of graphite were used to prepare samples for analysis, and each of the precursors was oxidized by two different methods (all samples were reduced by the same method of thermal reduction). Each obtained graphite oxide and reduced graphene oxide was analysed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS).

5.
Acta Bioeng Biomech ; 19(2): 21-30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869625

RESUMO

PURPOSE: High purity, fine crystalline, degradation-free at low temperature powders have attracted special interest in CAD/CAM prosthetic dentistry full ceramic restorations. This study reports the preparation and characterisation of zirconia-ceria (0.9 ZrO2 0.1 CeO2) powders. Materials were obtained from zirconium-n-alkoxide and cerium nitrate hexahydrate in the pH 2-4 and 8-10. METHODS: Zirconia- ceria powders were obtained with the sol-gel method in a humid-free environment. Thermal analysis (TGA/DTA) of the as-prepared materials was made for an assessment of its behaviour at elevated temperatures. Specimens were dried at 80 °C and calcinated in two stages: at 300 °C with soaking time 2.5 h and 850 °C with holding time 2.5 h, in order to evaluate the phase transformations. Thermal analyses of the as-dried powders were made for an assessment of its thermal behaviour during heat treatment up to 1000 °C. By X-ray diffraction (XRD), polymorphs of ZrO2 were identified. Additionally, scanning electron microscopy (SEM) and laser particle size distribution (PSD) were involved for characterisation of morphology of the powders. RESULTS: A correlation between the pH of the colloidal system and the morphology of the as-obtained powders were found. Based on analysis (SEM, PSD), structures were identified known as soft and hard agglomerates. CONCLUSIONS: It can be stated that differences found between powder morphology were dependent on the value pH used, which can be crucial for powder densification during sintering and compacting green bodies which, as a consequence, may be crucial for the lifetime of zirconia prostheses. Correlations between phase composition and pH are difficult to grasp, and require further, more sophisticated, studies.


Assuntos
Cério/química , Coloides/química , Materiais Dentários/síntese química , Excipientes/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Zircônio/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula , Transição de Fase , Pós
6.
Acta Bioeng Biomech ; 18(3): 53-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840448

RESUMO

PURPOSE: The main objective of this study was to obtain single-phase ß-ZrO2 powders with so-called soft agglomerates reproducibile morphology with acetyl-acetone as a chelating-agent. To the best of our knowledge there is no avaiable data which determine the effect of acetyl acetone on the phase composition and morphology of ceria-doped ZrO2 powders for biomedical applications. METHODS: Twenty variants of powders with different water to zirconia precursor and acetylacetone to zirconia precursor molar ratios were prepared. 0.9ZrO20.1CeO2 powders were obtained by a hydrolysis and condensation and further calcination of zirconium n-propoxide in a simple one-step sol-gel process. Influence of acetyloacetone to zirconia precursor on the phase composition ratio and water to zirconia precursor was investigated. Samples have been characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), thermal analysis (TGA/DTA) and scanning electron microscopy (SEM) measurements. RESULTS: Ceramic powders prepared by sol-gel process, according to the various concentration of chelating agent and water show different morphology and phase composition. CONCLUSIONS: Higher molar ratios of AcAc in range with smaller amounts of water cause hard agglomerates, obtained powders are characterized by highly thermally stable behaviour and various phase composition. With higher molar ratios of water to zirconium-n-propoxide so-called soft agglomerates and one phase powders are obtained.


Assuntos
Cerâmica/farmacologia , Cério/farmacologia , Quelantes/química , Prótese Dentária/métodos , Pentanonas/química , Transição de Fase , Zircônio/farmacologia , Hidrólise , Pós , Análise Espectral Raman , Temperatura , Difração de Raios X
7.
Mater Sci Eng C Mater Biol Appl ; 63: 155-63, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040207

RESUMO

The study of most of the literature devoted to the use of coronary stents indicates that their efficiency is determined by the physicochemical properties of the implant surface. Therefore, the authors of this study suggested conditions for the formation of SiO2 layers obtained with the use of sol-gel methodology showing physicochemical properties adequate to the specific conditions of the cardio-vascular system. Previous experience of authors helped them much to optimize the coating of 316LVM steel surface with SiO2. The values of parameters that determine the usefulness of the coating in medical applications have been determined. In order to identify the phenomena taking place at the boundary of phases and to evaluate the usefulness of the proposed surface modification, taking into consideration the medical sterilization (steam or ethylene oxide (EO)), the potentiodynamic, impedance, adhesion, surface morphology and biological assessment characterizations were performed. Regardless of the usage of the sterilizing agent (steam, EO) the study showed the reduction of critical force causing layer's delamination. The research results of corrosion resistance study also confirmed a slight decrease of SiO2 barrier properties of the samples after sterilization in contact with the artificial plasma. SiO2 layers after the sterilization process did not show significant features of cytotoxicity and had no negative influence on blood cell counts, which confirmed the results of quantitative and qualitative studies.


Assuntos
Materiais Revestidos Biocompatíveis/química , Dióxido de Silício/química , Aço Inoxidável/química , Materiais Revestidos Biocompatíveis/farmacologia , Espectroscopia Dielétrica , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Análise Espectral Raman
8.
Sensors (Basel) ; 16(1)2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26784198

RESUMO

The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...