Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sleep Res ; : e14134, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196146

RESUMO

The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.

2.
Exp Neurol ; 370: 114580, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884187

RESUMO

The subiculum, a key output region of the hippocampus, is increasingly recognized as playing a crucial role in seizure initiation and spread. The subiculum consists of glutamatergic pyramidal cells, which show alterations in intrinsic excitability in the course of epilepsy, and multiple types of GABAergic interneurons, which exhibit varying characteristics in epilepsy. In this study, we aimed to assess the role of the vasoactive intestinal peptide interneurons (VIP-INs) of the ventral subiculum in the pathophysiology of temporal lobe epilepsy. We observed that an anatomically restricted inhibition of VIP-INs of the ventral subiculum was sufficient to reduce seizures in the intrahippocampal kainic acid model of epilepsy, changing the circadian rhythm of seizures, emphasizing the critical role of this small cell population in modulating TLE. As we expected, permanent unilateral or bilateral silencing of VIP-INs of the ventral subiculum in non-epileptic animals did not induce seizures or epileptiform activity. Interestingly, transient activation of VIP-INs of the ventral subiculum was enough to increase the frequency of seizures in the acute seizure model. Our results offer new perspectives on the crucial involvement of VIP-INs of the ventral subiculum in the pathophysiology of TLE. Given the observed predominant disinhibitory role of the VIP-INs input in subicular microcircuits, modifications of this input could be considered in the development of therapeutic strategies to improve seizure control.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Ácido Caínico/toxicidade , Peptídeo Intestinal Vasoativo , Convulsões/induzido quimicamente , Interneurônios/fisiologia , Hipocampo
3.
Sci Rep ; 13(1): 9608, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311847

RESUMO

Rapid eye movement sleep (REMS) is characterized by the appearance of fast, desynchronized rhythms in the cortical electroencephalogram (EEG), similar to wakefulness. The low electromyogram (EMG) amplitude during REMS distinguishes it from wakefulness; therefore, recording EMG signal seems to be imperative for discriminating between the two states. The present study evaluated the high frequency components of the EEG signal from mice (80-500 Hz) to support REMS detection during sleep scoring without an EMG signal and found a strong positive correlation between waking and the average power of 80-120 Hz, 120-200 Hz, 200-350 Hz and 350-500 Hz. A highly negative correlation was observed with REMS. Furthermore, our machine learning approach demonstrated that simple EEG time-series features are enough to discriminate REMS from wakefulness with sensitivity of roughly 98 percent and specificity of around 92 percent. Interestingly, assessing only the higher frequency bands (200-350 Hz as well as 350-500 Hz) gives significantly greater predictive power than assessing only the lower end of the EEG frequency spectrum. This paper proposes an approach that can detect subtle changes in REMS reliably, and future unsupervised sleep-scoring approaches could greatly benefit from it.


Assuntos
Sono REM , Vigília , Animais , Camundongos , Sono , Eletroencefalografia , Eletromiografia
4.
Front Mol Neurosci ; 15: 974784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311021

RESUMO

Epileptic seizures result in pronounced over-expression of neuropeptide Y (NPY). In vivo and in vitro studies revealed that NPY exerts potent anticonvulsive actions through presynaptic Y2 receptors by suppressing glutamate release from principal neurons. We now investigated whether seizure-induced over-expression of NPY contributes to epileptic tolerance induced by preceding seizures. We used a previously established animal model based on selective inhibition of GABA release from parvalbumin (PV)-containing interneurons in the subiculum in mice. The animals present spontaneous recurrent seizures (SRS) and clusters of interictal spikes (IS). The frequency of SRS declined after five to six weeks, indicating development of seizure tolerance. In interneurons of the subiculum and sector CA1, SRS induced over-expression of NPY that persisted there for a prolonged time despite of a later decrease in SRS frequency. In contrast to NPY, somatostatin was not overexpressed in the respective axon terminals. Contrary to interneurons, NPY was only transiently expressed in mossy fibers. To demonstrate a protective function of endogenous, over-expressed NPY, we injected the selective NPY-Y2 receptor antagonist JNJ 5207787 simultaneously challenging the mice by a low dose of pentylenetetrazol (PTZ, 30 or 40 mg/kg, i.p.). In control mice, neither PTZ nor PTZ plus JNJ 5207787 induced convulsions. In mice with silenced GABA/PV neurons, PTZ alone only modestly enhanced EEG activity. When we injected JNJ 5207787 together with PTZ (either dose) the number of seizures, however, became significantly increased. In addition, in the epileptic mice CB1 receptor immunoreactivity was reduced in terminal areas of basket cells pointing to reduced presynaptic inhibition of GABA release from these neurons. Our experiments demonstrate that SRS result in overexpression of NPY in hippocampal interneurons. NPY overexpression persists for several weeks and may be related to later decreasing SRS frequency. Injection of the Y2 receptor antagonist JNJ 5207787 prevents this protective action of NPY only when release of the peptide is triggered by injection of PTZ and induces pronounced convulsions. Thus, over-expressed NPY released "on demand" by seizures may help terminating acute seizures and may prevent from recurrent epileptic activity.

5.
Epilepsia Open ; 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938285

RESUMO

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.

6.
PLoS One ; 17(5): e0267860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507634

RESUMO

Toll-like receptors (TLR) are one of the main constituents of the innate immune system in mammals. They can detect conserved microbial structures (pathogen-associated molecular patterns) and host-derived ligands that are produced during cellular stress and damage (danger-associated molecular patterns) and may then initiate an intracellular signaling cascade leading to the expression of pro-inflammatory cytokines and immediate immune responses. Some TLR (TLR1, 2, 4, 5, and 6) are expressed on the cell surface while others (TLR3, 7, 8 and 9) are present on the surface of endosomes and their ligands require internalization before recognition is possible. Several TLR have also been detected in neurons where they may serve functions that are not related to immune responses. TLR2, 3, and 4 have been described in cortical neurons and, for TLR4, a seizure-promoting role in epilepsies associated with inflammation has been shown. TLR3, 7, and 8 expressed in neurons seem to influence the growth or withdrawal of neurites and robust activation of TLR8 in neurons may even induce neuronal death. The goal of the current study was to investigate the expression of TLR8 in the hippocampus of mice during postnatal development and in adulthood. We focused on three functionally distinct groups of GABAergic interneurons characterized by the expression of the molecular markers parvalbumin, somatostatin, or calretinin, and we applied double fluorescence immunohistochemistry and cell counts to quantify co-expression of TLR8 in the three groups of GABA-interneurons across hippocampal subregions. We found subregion-specific differences in the expression of TLR8 in these interneurons. During postnatal development, TLR8 was detected only in mice older than P5. While only a small fraction of hippocampal calretinin-positive interneurons expressed TLR8, most parvalbumin-positive interneurons in all hippocampal subregions co-expressed TLR8. Somatostatin-positive interneurons co-expressing TLR8 were mainly present in hippocampal sector CA3 but rare in the dentate gyrus and CA1. High expression of TLR8 in parvalbumin-interneurons may contribute to their high vulnerability in human temporal lobe epilepsy.


Assuntos
Parvalbuminas , Receptor 8 Toll-Like/metabolismo , Animais , Calbindina 2/análise , Calbindina 2/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Ligantes , Mamíferos/metabolismo , Camundongos , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
7.
Neuroscience ; 487: 155-165, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167940

RESUMO

The hippocampus proper and the subiculum contain two major populations of somatostatin (SST)-containing interneurons, oriens-lacunosum moleculare (O-LM) cells projecting from the stratum oriens to the stratum lacunosum moleculare and bistratified cells with their cell bodies close to the pyramidal cell layer and axons terminating in the strata radiatum and oriens. Both types of interneurons innervate pyramidal cell dendrites and exert prominent feedback inhibition. We now investigated whether impairing this type of feed-back inhibition by selectively inhibiting GABA release from SST expressing interneurons in hippocampal sector CA1 and subiculum may be sufficient to induce spontaneous recurrent seizures. We injected transgenic mice expressing Cre-recombinase on the SST promoter unilaterally into the ventral CA1 sector and subiculum with an adeno-associated viral (AAV) vector expressing tetanus toxin light chain (TeLC) with its reading frame inverted in a flip-excision (FLEX) cassette. This treatment resulted in specific expression of TeLC and silencing of SST-containing interneurons. We continuously monitored the EEG and behavior of the mice for six weeks. Nine out of eleven mice within 10 days developed series of pre- or interictal spikes (IS, 21.4 ± 6.83 per week) and four mice exposed recurrent spontaneous seizures (SRS, 1.5 ± 0.29 per week). All 23 SRS observed were preceded by IS series. Our data demonstrate a critical role of feed-forward inhibition mediated by SST-containing interneurons suggesting that their sustained malfunctioning can be causatively involved in the development of TLE.


Assuntos
Interneurônios , Convulsões , Animais , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Convulsões/induzido quimicamente , Convulsões/metabolismo , Somatostatina/metabolismo
8.
Brain Commun ; 3(4): fcab239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708207

RESUMO

Epilepsy animal models indicate pronounced changes in the expression and rearrangement of GABAA receptor subunits in the hippocampus and in para-hippocampal areas, including widespread downregulation of the subunits α5 and δ, and upregulation of α4, subunits that mediate tonic inhibition of GABA. In this case-control study, we investigated changes in the expression of subunits α4, α5 and δ in hippocampal specimens of drug resistant temporal lobe epilepsy patients who underwent epilepsy surgery. Using in situ hybridization, immunohistochemistry and α5-specific receptor autoradiography, we characterized expression of the receptor subunits in specimens from patients with and without Ammon's horn sclerosis compared to post-mortem controls. Expression of the α5-subunit was abundant throughout all subfields of the hippocampus, including the dentate gyrus, sectors CA1 and CA3, the subiculum and pre- and parasubiculum. Significant but weaker expression was detected for subunits α4 and δ notably in the granule cell/molecular layer of control specimens, but was faint in the other parts of the hippocampus. Expression of all three subunits was similarly altered in sclerotic and non-sclerotic specimens. Respective mRNA levels were increased by about 50-80% in the granule cell layer compared with post-mortem controls. Subunit α5 mRNA levels and immunoreactivities were also increased in the sector CA3 and in the subiculum. Autoradiography for α5-containing receptors using [3H]L-655,708 as ligand showed significantly increased binding in the molecular layer of the dentate gyrus in non-sclerotic specimens. Increased expression of the α5 and δ subunits is in contrast to the previously observed downregulation of these subunits in different epilepsy models, whereas increased expression of α4 in temporal lobe epilepsy patients is consistent with that in the rodent models. Our findings indicate increased tonic inhibition likely representing an endogenous anticonvulsive mechanism in temporal lobe epilepsy.

9.
Neuroscience ; 475: 52-72, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455012

RESUMO

Traumatic brain injury (TBI) causes 10-20% of structural epilepsy, with seizures typically originating in the cortex. Alterations in the neuronal microcircuits in the cortical epileptogenic zone, however, are poorly understood. Here, we assessed TBI-induced changes in perisomatic gamma aminobutyric acid (GABA)-ergic innervation in the perilesional cortex. We hypothesized that TBI will damage parvalbumin (PV)-immunoreactive inhibitory neurons and induce regulation of the associated GABAergic molecular interactome. TBI was induced in adult male Sprague-Dawley rats by lateral fluid-percussion injury. At 1-month post-TBI, the number of PV-positive somata was plotted on unfolded cortical maps and the distribution and density of immunopositive terminals analyzed. Qualitative analysis revealed either patchy microlesions of several hundred micrometers in diameter or diffuse neuronal loss. Quantitative analysis demonstrated a reduction in the number of PV-positive interneurons in patches down to 0% of that in sham-operated controls in the perilesional cortex. In the majority of patches, the cell numbers ranged from 71% to 90% that of the controls. The loss of PV-positive somata was accompanied by decreased axonal labeling. In situ hybridization revealed downregulated PV mRNA expression in the perilesional cortex. Gene Set Enrichment Analysis indicated a robustly downregulated expression profile of PV-related genes, which was confirmed by quantitative reverse transcriptase polymerase chain reaction. Specifically, we found that genes encoding postsynaptic GABA-A receptor genes, Gabrg2 and Gabrd, were downregulated in TBI animals compared with controls. Our data suggests that patchy reduction in PV-positive perisomatic inhibitory innervation contributes to the development of focal cortical inhibitory deficit after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia , Animais , Interneurônios , Masculino , Parvalbuminas , Ratos , Ratos Sprague-Dawley
10.
J Comp Neurol ; 528(15): 2551-2568, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32220012

RESUMO

GABAA receptors are composed of five subunits arranged around a central chloride channel. Their subunits originate from different genes or gene families. The majority of GABAA receptors in the mammalian brain consist of two α-, two ß- and one γ- or δ-subunit. This subunit organization crucially determines the physiological and pharmacological properties of the GABAA receptors. Using immunohistochemistry, we investigated the distribution of 10 GABAA receptor subunits (α1, α2, α3, α4, α5, ß1, ß2, ß3, γ2, and δ) in the fore brain of three female rhesus monkeys (Macaca mulatta). Within the cerebral cortex, subunits α1, α5, ß2, ß3, and γ2 were found in all layers, α2, α3, and ß1 were more concentrated in the inner and outer layers. The caudate/putamen was rich in α1, α2, α5, all three ß-subunits, γ2, and δ. Subunits α3 and α5 were more concentrated in the caudate than in the putamen. In contrast, α1, α2, ß1, ß2, γ2, and δ were highest in the pallidum. Most dorsal thalamic nuclei contained subunits α1, α2, α4, ß2, ß3, and γ2, whereas α1, α3, ß1, and γ2 were most abundant in the reticular nucleus. Within the amygdala, subunits α1, α2, α5, ß1, ß3, γ2, and δ were concentrated in the cortical nucleus, whereas in the lateral and basolateral amygdala α1, α2, α5, ß1, ß3, and δ, and in the central amygdala α1, α2, ß3, and γ2 were most abundant. Interestingly, subunit α3-IR outlined the intercalated nuclei of the amygdala. In the hippocampus, subunits α1, α2, α5, ß2, ß3, γ2, and δ were highly expressed in the dentate molecular layer, whereas α1, α2, α3, α5, ß1, ß2, ß3, and γ2 were concentrated in sector CA1 and the subiculum. The distribution of GABAA receptor subunits in the rhesus monkey was highly heterogeneous indicating a high number of differently assembled receptors. In most areas investigated, notably in the striatum/pallidum, amygdaloid nuclei and in the hippocampus it was more diverse than in the rat and mouse indicating a more heterogeneous and less defined receptor assembly in the monkey than in rodent brain.


Assuntos
Prosencéfalo/química , Prosencéfalo/metabolismo , Subunidades Proteicas/biossíntese , Receptores de GABA-A/biossíntese , Fatores Etários , Sequência de Aminoácidos , Animais , Feminino , Imuno-Histoquímica , Macaca mulatta , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Receptores de GABA-A/análise , Receptores de GABA-A/genética
11.
Chembiochem ; 20(5): 710-717, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447158

RESUMO

N-(4-Ethylphenyl)-N'-phenylurea (INH14) is a fragment-like compound that inhibits the toll-like receptor 2 (TLR2)-mediated inflammatory activity and other inflammatory pathways (i.e., TLR4, TNF-R and IL-1R). In this study, we determined the molecular target of INH14. Overexpression of proteins that are part of the TLR2 pathway in cells treated with INH14 indicated that the target lay downstream of the complex TAK1/TAB1. Immunoblot assays showed that INH14 decreased IkBα degradation in cells activated by lipopeptide (TLR2 ligand). These data indicated the kinases IKKα and/or IKKß as the targets of INH14, which was confirmed with kinase assays (IC50 IKKα=8.97 µm; IC50 IKKß=3.59 µm). Furthermore, in vivo experiments showed that INH14 decreased TNFα formed after lipopeptide-induced inflammation, and treatment of ovarian cancer cells with INH14 led to a reduction of NF-kB constitutive activity and a reduction in the wound-closing ability of these cells. These results demonstrate that INH14 decreases NF-kB activation through the inhibition of IKKs. Optimization of INH14 could lead to potent inhibitors of IKKs that might be used as antiinflammatory drugs.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Ureia/análogos & derivados , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
12.
Epilepsia ; 59(11): e166-e171, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30298565

RESUMO

There exists solid evidence that endogenous galanin and galanin agonists exert anticonvulsive actions mediated both by galanin 1 receptor (GAL1-R) and galanin 2 receptor (GAL2-R). We have now investigated whether depletion of the recently identified third galanin receptor, GAL3-R, and that of GAL2-R, alters the threshold to the systemically applied γ-aminobutyric acid (GABA) antagonist pentylenetetrazole (PTZ) or to intrahippocampally administered kainic acid (KA). In neither model, GAL3-KO mice differed in their latency to the first seizure, mean seizure duration, total number of seizures, or time spent in seizures compared to wild-type controls. In addition, consistent with previous data, the response to PTZ was not altered in GAL2-KO mice. In contrast, intrahippocampal KA resulted in a significantly increased number of seizures and time spent in seizures in GAL2-KO mice, although the latency to the first seizure and the duration of individual seizures was not altered. These results are consistent with the previous data showing that GAL2-R knockdown does not affect the number of perforant path stimulations required for initiating status epilepticus but significantly increases the seizure severity during the ongoing status. In conclusion, our data support a specific role of GAL2-R but not of GAL3-R in mediating the anticonvulsive actions of endogenous galanin.


Assuntos
Receptor Tipo 2 de Galanina/deficiência , Receptor Tipo 3 de Galanina/deficiência , Convulsões/genética , Animais , Modelos Animais de Doenças , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pentilenotetrazol/toxicidade , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 3 de Galanina/genética , Convulsões/induzido quimicamente
13.
J Neurosci ; 37(34): 8166-8179, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28733354

RESUMO

Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.


Assuntos
Hipocampo/fisiopatologia , Interneurônios/fisiologia , Parvalbuminas/antagonistas & inibidores , Parvalbuminas/fisiologia , Convulsões/fisiopatologia , Animais , Eletroencefalografia/métodos , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente
14.
Neuropeptides ; 61: 49-55, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27847128

RESUMO

Neuropeptide Y (NPY)-Y2 receptors are G-protein coupled receptors and, upon activation, induce opening of potassium channels or closing of calcium channels. They are generally presynaptically located. Depending on the neuron in which they are expressed they mediate inhibition of release of NPY and of the neuron's classical transmitter GABA, glutamate or noradrenaline, respectively. Here we provide evidence that Y2 receptor binding is inhibited dose-dependently by GTPγS along Schaffer collaterals, the stria terminalis and the fimbria indicating that Y2 receptors are functionally coupled to G-proteins along these fiber tracts. Double immune fluorescence revealed coexistence of Y2-immunoreactivity with ß-tubulin, a marker for axons in the stria terminalis, but not with synaptophysin labeling presynaptic terminals, supporting the localization of Y2 receptors along axonal tracts. After kainic acid-induced seizures in rats, GTPγS-induced inhibition of Y2 receptor binding is facilitated in the Schaffer collaterals but not in the stria terminalis. Our data indicate that Y2 receptors are not only located at nerve terminals but also along fiber tracts and are there functionally coupled to G-proteins.


Assuntos
Axônios/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fibras Nervosas/metabolismo , Neurônios/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Convulsões/metabolismo , Animais , Hipocampo/metabolismo , Ácido Caínico , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Sinaptofisina/metabolismo , Tubulina (Proteína)/metabolismo
15.
J Neurochem ; 136(4): 717-730, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603269

RESUMO

Epigenetic mechanisms like altered histone acetylation may have a crucial role in epileptogenesis. In two mouse models of temporal lobe epilepsy, we investigated changes in the expression of class II histone deacetylases (HDAC), a group of signal transducers that shuttle between nucleus and cytoplasm. Intrahippocampal injection of kainic acid (KA) induced a status epilepticus, development of spontaneous seizures (after 3 days), and finally chronic epilepsy and granule cell dispersion. Expression of class II HDAC mRNAs was investigated at different time intervals after KA injection in the granule cell layers and in sectors CA1 and CA3 contralateral to the site of KA injection lacking neurodegeneration. Increased expression of HDAC5 and 9 mRNAs coincided with pronounced granule cell dispersion in the KA-injected hippocampus at late intervals (14-28 days after KA) and equally affected both HDAC9 splice variants. In contrast, in the pilocarpine model (showing no granule cell dispersion), we observed decreases in the expression of HDAC5 and 9 at the same time intervals. Beyond this, striking similarities between both temporal lobe epilepsy models such as fast decreases in HDAC7 and 10 mRNAs during the acute status epilepticus were observed, notably also in the contralateral hippocampus not affected by neurodegeneration. The particular patterns of HDAC mRNA expression suggest a role in epileptogenesis and granule cell dispersion. Reduced expression of HDACs may result in increased expression of pro- and anticonvulsive proteins. On the other hand, export of HDACs from the nucleus into the cytoplasm could allow for deacetylation of cytoplasmatic proteins involved in axonal and dendritic remodeling, like granule cell dispersion. HDAC 5 and HDAC 9 expression is highly increased in granule cells of the KA-injected hippocampus and parallels granule cell dispersion. Both HDACs are thought to be targeted to the cytoplasm and to act there by deacetylating cytoplasmatic (e.g. cytosceleton-related) proteins.

16.
Exp Neurol ; 273: 92-104, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26238735

RESUMO

A prominent role of epigenetic mechanisms in manifestation of epilepsy has been proposed. Thus altered histone H3 and H4 acetylation has been demonstrated in experimental models of temporal lobe epilepsy (TLE). We now investigated changes in the expression of the class I and class IV histone deacetylases (HDAC) in two complementary mouse TLE models. Unilateral intrahippocampal injection of kainic acid (KA) induced a status epilepticus lasting 6 to 24h, development of spontaneous limbic seizures (2 to 3 days after KA injection) and chronic epilepsy, as revealed by telemetric recordings of the EEGs. Mice were killed at different intervals after KA injection and expression of HDAC mRNAs was investigated by in situ hybridization. We observed marked decreases in the expression of HDACs 1, 2 and 11 (by up to 75%) in the granule cell and pyramidal cell layers of the hippocampus during the acute status epilepticus (2 to 6h after KA injection). This was followed by increased expression of all class I HDAC mRNAs in all principal cell layers of the hippocampus after 12 to 48 h. In the chronic phase, 14 and 28 days after KA, only modest increases in the expression of HDAC1 mRNA were observed in granule and pyramidal cells. Immunohistochemistry using an antibody detecting HDAC2 revealed results consistent with the mRNA data and indicates also expression in glial cells on the injection side. Similar changes as seen in the KA model were observed after a pilocarpine-induced status epilepticus except that decreases in HDACs 2, 3 and 8 were also seen at the chronic 28 day interval. The prominent decreases in HDAC expression during status epilepticus are consistent with the previously demonstrated increased expression of numerous proteins and with the augmented acetylation of histone H4. It is suggested that respective putative gene products could facilitate proconvulsive as well as anticonvulsive mechanisms. The increased expression of all class I HDACs during the "silent phase", on the other hand, may be related to decreased histone acetylation, which could cause a decrease in expression of certain proteins, a mechanism that could also promote epileptogenesis. Thus, addressing HDAC expression may have a therapeutic potential in interfering with a status epilepticus and with the manifestation of TLE.


Assuntos
Epilepsia do Lobo Temporal/enzimologia , Histona Desacetilase 1/metabolismo , Histona Desacetilases/metabolismo , Animais , Convulsivantes/toxicidade , Modelos Animais de Doenças , Eletrodos Implantados , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Histona Desacetilase 1/genética , Histona Desacetilases/genética , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pilocarpina/toxicidade , Telemetria , Fatores de Tempo , Gravação em Vídeo
17.
Epilepsia ; 56(8): 1207-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26081613

RESUMO

OBJECTIVE: Alterations in γ-aminobutyric acid (GABA)-ergic cortical neurons have been reported in focal cortical dysplasia (FCD)Ia/IIIa, a malformation of cortical development associated with drug-resistant epilepsy. We compared numbers of neurons containing calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR) and densities of respective fibers in lateral temporal lobe surgical specimens of 17 patients with FCD with 19 patients who underwent anterior temporal lobe resection due to nonlesional temporal lobe epilepsy (non-FCD) as well as with 7 postmortem controls. METHODS: PV-, CB-, and CR-immunoreactive (IR) neurons were quantitatively investigated with use of two-dimensional cell counting and densitometry (reflecting mainly IR fibers) in cortical layers II, IV, and V. RESULTS: Numbers of PV-IR neurons, ratios of PV-containing to Nissl-stained neurons (correcting for eventual cell loss), and densities of PV-IR were higher in layer II of the cortex of FCD compared to non-FCD patients. Similarly, densities of CB-IR and CR-IR were also higher in layers II and V, respectively, of FCD than of non-FCD patients. Comparison with postmortem controls revealed significant higher cell numbers and fiber labeling for all three calcium-binding proteins in FCD cortex, whereas numbers of Nissl-stained neurons did not vary between FCD, non-FCD, and postmortem controls. In non-FCD versus postmortem controls, ratios of calcium-binding protein-IR cells to Nissl-stained neurons were unchanged in most instances except for increased CB/Nissl ratios and CB-IR densities in all cortical layers. SIGNIFICANCE: Increased numbers of PV neurons and fiber labeling in FCD compared to nondysplastic epileptic temporal neocortex and postmortem controls may be related to cortical malformation, whereas an increased number of CB-IR neurons and fiber labeling both in FCD and non-FCD specimens compared with postmortem controls may be associated with ongoing seizure activity. The observed changes may represent increased expression of calcium-binding proteins and thus compensatory mechanisms for seizures and neuronal loss in drug-resistant epilepsy.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Neurônios GABAérgicos/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Lobo Temporal/metabolismo , Adolescente , Adulto , Calbindina 2/metabolismo , Calbindinas/metabolismo , Estudos de Casos e Controles , Contagem de Células , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/patologia , Feminino , Neurônios GABAérgicos/citologia , Humanos , Imuno-Histoquímica , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/patologia , Pessoa de Meia-Idade , Parvalbuminas/metabolismo , Lobo Temporal/patologia , Adulto Jovem
18.
Neuropharmacology ; 88: 122-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25229716

RESUMO

Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, ß2, ß3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, ß2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei.


Assuntos
Lesões Encefálicas/metabolismo , Hipocampo/metabolismo , Receptores de GABA-A/metabolismo , Tálamo/metabolismo , Animais , Autorradiografia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Lateralidade Funcional , Expressão Gênica , Hipocampo/patologia , Imuno-Histoquímica , Hibridização In Situ , Microdissecção e Captura a Laser , Masculino , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Tálamo/patologia
19.
Proc Natl Acad Sci U S A ; 111(19): 7138-43, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24782539

RESUMO

The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1-3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders.


Assuntos
Transtornos de Ansiedade/genética , Transtornos de Ansiedade/fisiopatologia , Transtorno Depressivo/genética , Transtorno Depressivo/fisiopatologia , Receptor Tipo 3 de Galanina/genética , Animais , Comportamento Animal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Fenótipo , Receptor Tipo 3 de Galanina/metabolismo , Serotonina/metabolismo , Comportamento Social , Glândulas Sudoríparas/fisiologia
20.
Front Neural Circuits ; 7: 142, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24065890

RESUMO

The parahippocampal areas including the subiculum, pre- and parasubiculum, and notably the entorhinal cortex (EC) are intimately involved in the generation of limbic seizures in temporal lobe epilepsy. We investigated changes in the expression of 10 major GABAA receptor subunit mRNAs in subfields of the ventral hippocampus, ventral subiculum, EC, and perirhinal cortex (PRC) at different intervals (1, 8, 30, and 90 days) after kainic acid (KA)-induced status epilepticus priming epileptogenesis in the rat. The most pronounced and ubiquitous changes were a transient (24 h after KA only) down-regulation of γ2 mRNA and lasting decreases in subunit α5, ß3, and δ mRNAs that were prominent in all hippocampal and parahippocampal areas. In the subiculum similarly as in sectors CA1 and CA3, levels of subunit α1, α2, α4, and γ2 mRNAs decreased transiently (1 day after KA-induced status epilepticus). They were followed by increased expression of subunit α1 and α3 mRNAs in the dentate gyrus (DG) and sectors CA1 and CA3, and subunit α1 also in the EC layer II (30 and 90 days after KA). We also observed sustained overexpression of subunits α4 and γ2 in the subiculum and in the Ammon's horn. Subunit γ2 mRNA was also increased in sector CA1 at the late intervals after KA. Taken together, our results suggest distinct regulation of mRNA expression for individual GABAA receptor subunits. Especially striking was the wide-spread down-regulation of the often peri- or extrasynaptically located subunits α5 and δ. These subunits are often associated with tonic inhibition. Their decrease could be related to decreased tonic inhibition or may merely reflect compensatory changes. In contrast, expression of subunit α4 that may also mediate tonic inhibition when associated with the δ-subunit was significantly upregulated in the DG and in the proximal subiculum at late intervals. Thus, concomitant up-regulation of subunit γ2, α1 and α4 mRNAs (and loss in δ-subunits) ultimately indicates significant rearrangement of GABAA receptor composition after KA-induced seizures.


Assuntos
Hipocampo/metabolismo , Giro Para-Hipocampal/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Convulsões/metabolismo , Animais , Regulação para Baixo , Ácido Caínico , Masculino , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Convulsões/induzido quimicamente , Convulsões/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...