Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Zool ; 3: 13, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16948842

RESUMO

BACKGROUND: Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of Acanthocardia tuberculata and Hiatella arctica, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference. RESULTS: The size of the mt-genome in Acanthocardia tuberculata is 16.104 basepairs (bp), and in Hiatella arctica 18.244 bp. The Acanthocardia mt-genome contains 12 of the typical protein coding genes, lacking the Atpase subunit 8 (atp8) gene, as all published marine bivalves. In contrast, a complete atp8 gene is present in Hiatella arctica. In addition, we found a putative truncated atp8 gene when re-annotating the mt-genome of Venerupis philippinarum. Both mt-genomes reported here encode all genes on the same strand and have an additional trnM. In Acanthocardia several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In Hiatella, the 3' end of the NADH dehydrogenase subunit (nad)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of Hiatella is markedly different from all other known molluscan mt-genomes, that of Acanthocardia shows few identities with the Venerupis philippinarum. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of Acanthocardia and Venerupis. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves. CONCLUSION: The two mt-genomes reported here add to and underline the high variability of gene order and presence of duplications in bivalve and molluscan taxa. Some genomic traits like the loss of the atp8 gene or the encoding of all genes on the same strand are homoplastic among the Bivalvia. These characters, gene order, and the nucleotide sequence data show considerable potential of resolving phylogenetic patterns at lower taxonomic levels.

2.
Mol Phylogenet Evol ; 31(2): 605-17, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15062797

RESUMO

Comparisons of mitochondrial gene sequences and gene arrangements can be informative for reconstructing high-level phylogenetic relationships. We determined the complete sequence of the mitochondrial genome of Siphonodentalium lobatum, (Mollusca, Scaphopoda). With only 13,932 bases, it is the shortest molluscan mitochondrial genome reported so far. The genome contains the usual 13 protein-coding genes, two rRNA and 22 tRNA genes. The ATPase subunit 8 gene is exceptionally short. Several transfer RNAs show truncated TpsiC arms or DHU arms. The gene arrangement of S. lobatum is markedly different from all other known molluscan mitochondrial genomes and shows low similarity even to an unpublished gene order of a dentaliid scaphopod. Phylogenetic analyses of all available complete molluscan mitochondrial genomes based on amino acid sequences of 11 protein-coding genes yield trees with low support for the basal branches. None of the traditionally accepted molluscan taxa and phylogenies are recovered in all analyses, except for the euthyneuran Gastropoda. S. lobatum appears as the sister taxon to two of the three bivalve species. We conclude that the deep molluscan phylogeny is probably beyond the resolution of mitochondrial protein sequences. Moreover, assessing the phylogenetic signal in gene order data requires a much larger taxon sample than is currently available, given the exceptional diversity of this character set in the Mollusca.


Assuntos
DNA Mitocondrial/genética , Genoma , Moluscos/classificação , Moluscos/genética , Filogenia , Sequência de Aminoácidos , Animais , Códon/genética , Ordem dos Genes/genética , Mitocôndrias/genética , Dados de Sequência Molecular , Proteínas/genética , RNA de Transferência/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína
3.
Mol Phylogenet Evol ; 28(3): 536-51, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12927137

RESUMO

This contribution addresses two questions: which alignment patterns are causing non-monophyly of the Asellota and what is the phylogenetic history of this group? The Asellota are small benthic crustaceans occurring in most aquatic habitats. In view of the complex morphological apomorphies known for this group, monophyly of the Asellota has never been questioned. Using ssu rDNA sequences of outgroups and of 16 asellote species from fresh water, littoral marine habitats and from deep-sea localities, the early divergence between the lineages in fresh water and in the ocean, and the monophyly of the deep-sea taxon Munnopsidae are confirmed. Relative substitution rates of freshwater species are much lower than in other isopod species, rates being highest in some littoral marine genera (Carpias and Jaera). Furthermore, more sequence sites are variable in marine than in freshwater species, the latter conserve outgroup character states. Monophyly is recovered with parsimony methods, but not with distance and maximum likelihood analyses, which tear apart the marine from the freshwater species. The information content of alignments was studied with spectra of supporting positions. The scarcity of signal (=apomorphic nucleotides) supporting monophyly of the Asellota is attributed to a short stem-line of this group or to erosion of signal in fast evolving marine species. Parametric boostrapping in combination with spectra indicates that a tree model cannot explain the data and that monophyly of the Asellota should not be rejected even though many topologies do not recover this taxon.


Assuntos
Meio Ambiente , Evolução Molecular , Variação Genética , Isópodes/genética , Filogenia , Animais , Composição de Bases , DNA Ribossômico/genética , Água Doce , Funções Verossimilhança , Modelos Genéticos , Água do Mar , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA