Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(4): e0152993, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27043207

RESUMO

Endothelial Colony Forming Cells (ECFCs), a distinct population of Endothelial Progenitor Cells (EPCs) progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs) have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs) more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile.


Assuntos
Diferenciação Celular/genética , Autorrenovação Celular/genética , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Transcriptoma , Adulto , Biomarcadores , Linhagem Celular , Células Cultivadas , Reprogramação Celular , Ensaio de Unidades Formadoras de Colônias , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Adulto Jovem
2.
PLoS One ; 9(1): e84179, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24392113

RESUMO

OBJECTIVE: The vascular system is adapted to specific functions in different tissues and organs. Vascular endothelial cells are important elements of this adaptation, leading to the concept of 'specialized endothelial cells'. The phenotype of these cells is highly dependent on their specific microenvironment and when isolated and cultured, they lose their specific features after few passages, making models using such cells poorly predictive and irreproducible. We propose a new source of specialized endothelial cells based on cord blood circulating endothelial progenitors (EPCs). As prototype examples, we evaluated the capacity of EPCs to acquire properties characteristic of cerebral microvascular endothelial cells (blood-brain barrier (BBB)) or of arterial endothelial cells, in specific inducing culture conditions. APPROACH AND RESULTS: First, we demonstrated that EPC-derived endothelial cells (EPDCs) co-cultured with astrocytes acquired several BBB phenotypic characteristics, such as restricted paracellular diffusion of hydrophilic solutes and the expression of tight junction proteins. Second, we observed that culture of the same EPDCs in a high concentration of VEGF resulted, through activation of Notch signaling, in an increase of expression of most arterial endothelial markers. CONCLUSIONS: We have thus demonstrated that in vitro culture of early passage human cord blood EPDCs under specific conditions can induce phenotypic changes towards BBB or arterial phenotypes, indicating that these EPDCs maintain enough plasticity to acquire characteristics of a variety of specialized phenotypes. We propose that this property of EPDCs might be exploited for producing specialized endothelial cells in culture to be used for drug testing and predictive in vitro assays.


Assuntos
Artérias/citologia , Artérias/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Fenótipo , Células-Tronco/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Permeabilidade Capilar , Técnicas de Cultura de Células , Técnicas de Cocultura , Células Endoteliais/citologia , Sangue Fetal/citologia , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ratos , Células-Tronco/citologia , Transcriptoma , Veias/metabolismo
3.
Cell Transplant ; 19(9): 1143-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20447337

RESUMO

Umbilical cord blood (CB) represents a main source of circulating endothelial progenitor cells (cEPCs). In view of their clinical use, in either the autologous or allogeneic setting, cEPCs should likely be expanded from CB kept frozen in CB banks. In this study, we compared the expansion, functional features, senescence pattern over culture, and in vivo angiogenic potential of cEPCs isolated from fresh or cryopreserved CB (cryoCB). cEPCs could be isolated in only 59% of cryoCB compared to 94% for fresh CB, while CB units were matched in terms of initial volume, nucleated and CD34(+) cell number. Moreover, the number of endothelial colony-forming cells was significantly decreased when using cryoCB. Once cEPCs culture was established, the proliferation, migration, tube formation, and acetylated-LDL uptake potentials were similar in both groups. In addition, cEPCs derived from cryoCB displayed the same senescence status and telomeres length as that of cEPCs derived from fresh CB. Karyotypic aberrations were found in cells obtained from both fresh and cryoCB. In vivo, in a hind limb ischemia murine model, cEPCs from fresh and cryoCB were equally efficient to induce neovascularization. Thus, cEPCs isolated from cryoCB exhibited similar properties to those of fresh CB in vitro and in vivo. However, the low frequency of cEPCs colony formation after cryopreservation shed light on the need for specific freezing conditions adapted to cEPCs in view of their future clinical use.


Assuntos
Criopreservação , Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco/citologia , Animais , Processos de Crescimento Celular/fisiologia , Modelos Animais de Doenças , Feminino , Imunofenotipagem , Cariotipagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Contraste de Fase
4.
Stem Cells ; 27(8): 1750-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19544443

RESUMO

Embryoid bodies (EBs) generated during differentiation of human embryonic stem cells (hESCs) contain vascular-like structures, suggesting that commitment of mesoderm progenitors into endothelial cells occurs spontaneously. We showed that bone morphogenetic protein 4 (BMP4), an inducer of mesoderm, accelerates the peak expression of CD133/kinase insert domain-containing receptor (KDR) and CD144/KDR. Because the CD133(+)KDR(+) population could represent endothelial progenitors, we sorted them at day 7 and cultured them in endothelial medium. These cells were, however, unable to differentiate into endothelial cells. Under standard conditions, the CD144(+)KDR(+) population represents up to 10% of the total cells at day 12. In culture, these cells, if sorted, give rise to a homogeneous population with a morphology typical of endothelial cells and express endothelial markers. These endothelial cells derived from the day 12 sorted population were functional, as assessed by different in vitro assays. When EBs were stimulated by BMP4, the CD144(+)KDR(+) peak was shifted to day 7. Most of these cells, however, were CD31(-), becoming CD31(+) in culture. They then expressed von Willebrand factor and were functional. This suggests that, initially, the BMP4-boosted day 7, CD144(+)KDR(+)CD31(-) population represents immature endothelial cells that differentiate into mature endothelial cells in culture. The expression of OCT3/4, a marker of immaturity for hESCs decreases during EB differentiation, decreasing faster following BMP4 induction. We also show that BMP4 inhibits the global expression of GATA2 and RUNX1, two transcription factors involved in hemangioblast formation, at day 7 and day 12.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Antígenos CD/biossíntese , Caderinas/biossíntese , Proteínas de Transporte/farmacologia , Diferenciação Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Citocinas/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Humanos , Cinética , Fatores de Transcrição/biossíntese
5.
Hum Mol Genet ; 16(22): 2683-92, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17720887

RESUMO

Heterozygous mutations in JAGGED1, encoding a single-pass transmembrane ligand for the Notch receptors, cause Alagille syndrome (AGS), a polymalformative disorder affecting the liver, heart, eyes and skeleton and characterized by a peculiar facies. Most of the JAGGED1 mutations generate premature termination codons, and as a result, two pathogenic mechanisms causing AGS have been proposed: haploinsufficiency or a dominant-negative effect of putative truncated proteins. To determine whether missense or protein-truncating mutations in JAGGED1 can lead to the synthesis and function of abnormal proteins, we performed cell culture experiments. We showed that human JAGGED1 undergoes a metalloprotease-dependent cleavage resulting in the shedding of its extracellular domain and that this domain seems able to fulfill a biological function in vitro, probably by antagonizing Notch signaling. Moreover, the soluble form of JAGGED1 was able to compete with the transmembrane ligand. Mutant proteins with missense or nonsense mutations were synthesized and gave rise to a chord-like phenotype and a migration defect when expressed by stably transfected cells. These chord-like structures were similar to the phenotype exhibited by fibroblasts isolated from a fetus with a protein-truncating mutation. Results obtained from Notch signaling inhibition and Notch reporter assays showed that this chord-like phenotype, exhibited by mutant JAGGED1 transfectants, may result from an inhibitory effect on Notch signaling. Altogether, our results favor a dominant-negative mechanism of some JAGGED1 mutations in AGS.


Assuntos
Síndrome de Alagille/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Mutação/genética , Receptores Notch/genética , Transdução de Sinais , Animais , Western Blotting , Células COS , Diferenciação Celular , Linhagem Celular , Movimento Celular , Chlorocebus aethiops , Imunofluorescência , Humanos , Proteína Jagged-1 , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Transfecção
6.
J Pediatr Gastroenterol Nutr ; 44(4): 453-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17414143

RESUMO

OBJECTIVES: Progressive familial intrahepatic cholestasis (PFIC) and to a lesser extent, Alagille syndrome, often lead to end-stage liver disease during childhood. We report our experience of DNA-based prenatal diagnosis of PFIC1-3 and Alagille syndrome. PATIENTS AND METHODS: Four molecular antenatal diagnoses were performed in 3 PFIC families and 17 in 11 Alagille syndrome families. DNA was isolated from chorionic villus or cultured amniocyte samples from women, without pregnancy complications. RESULTS: All four foetuses with a family history of PFIC1, 2, or 3 were heterozygous for an ATP8B1, ABCB11, or ABCB4 mutation and pregnancies were continued. Three of the infants were healthy after birth, and 1 premature infant, who had an ABCB4 mutation, experienced transient neonatal cholestasis. Among the families with a history of de novo JAG1 mutation, none of the foetuses was mutated, versus 40% of those with a history of familial mutation. Of 4 pregnant women with a JAG1-mutated foetus, 3 cut short their pregnancy and 1 gave birth to a child with overt Alagille syndrome. CONCLUSIONS: Molecular antenatal diagnosis of PFIC1-3 and Alagille syndrome is reliable because clinical outcome after birth corresponded to molecular foetal data.


Assuntos
Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/genética , Amostra da Vilosidade Coriônica , DNA/análise , Feminino , Aconselhamento Genético , Humanos , Mutação , Gravidez
7.
Hum Genet ; 116(6): 445-53, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15772854

RESUMO

Heterozygous mutations in JAGGED1 (JAG1), encoding a ligand for Notch receptors, have been identified in patients with Alagille syndrome (AGS). These mutations map to the extracellular and transmembrane domains of JAG1, giving rise in 70% cases to a premature termination codon (PTC). Although haploinsufficiency has been hypothesised as the main mechanism of AGS, a dominant negative effect of truncated forms of Serrate/Jagged has been suggested. Only few studies of the mutant mRNAs and proteins from AGS patients have been performed to elucidate the molecular mechanisms of the disease. To gain insight into the stability of mutant mRNAs, we studied transcripts from five livers and 24 lymphoblastoid cell lines (LCLs) of AGS patients. Mutant JAG1 transcripts were recovered (albeit in different relative amounts) from RNAs with missense mutations (five) or in-frame deletions (two), and from all but two of the 21 with PTCs. In addition, results from LCL RNAs correlated well with results from liver RNAs. Mutant transcripts were also recovered from tissues of a 23-week-old AGS foetus with a PTC mutation. This suggests that most mutant transcripts with PTCs escape nonsense-mediated mRNA decay (NMD) and could lead to the synthesis of soluble forms of JAG1. Production of a truncated protein was indeed observed after transfection of COS cells with a mutant JAG1 cDNA. In conclusion, mutant JAG1 transcripts are present in LCLs, livers and tissues of AGS patients, whatever the mutation type, and mutant proteins can be produced, suggesting a dominant negative effect of some mutant proteins as another molecular mechanism of AGS.


Assuntos
Síndrome de Alagille/genética , Proteínas de Membrana/genética , Mutação , Síndrome de Alagille/embriologia , Alelos , Animais , Sequência de Bases , Células COS , Proteínas de Ligação ao Cálcio , Linhagem Celular , Chlorocebus aethiops , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteína Jagged-1 , Linfócitos , Dados de Sequência Molecular , Proteínas Serrate-Jagged , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...