Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 255: 112533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547784

RESUMO

Two bases-decavanadates coordination compounds [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O (1) and [(C7H11N2)4][Mg(H2O)6][O28V10].4H2O (2) have been synthesized and well characterized using vibrational spectroscopy (infrared), UV-Visible analysis and single crystal X-ray diffraction technique. The formula unit, for both compounds, is composed by the decavanadate [V10O28]6-, hydrated magnesium ion, a counter anion and free water molecules. The transition metal adopts octahedral geometries in both compound (1) and (2). The existence of a multitude of hydrogen bonding interactions for both compounds provides a stable three-dimensional supramolecular structure. Optical absorption reveals a band gap energy indicating the semi-conductive nature of the compound. In this study, the cytotoxic and the anti-proliferative activities of compounds (1) and (2) on human cancer cells (U87 and MDA-MB-231) were investigated. Both compounds demonstrated dose-dependent anti-proliferative activity on U87 and MDA-MB-231 with respective IC50 values of 0.82 and 0.31 µM and 1.4 and 1.75 µM. These data provide evidence on the potential anticancer activity of [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O and [(C7H11N2)4][Mg(H2O)2][O28V10].4H2O. Molecular docking of the compounds was also examined. Molecular docking studies were performed for both compounds against four target receptors and revealed better binding affinity with these targets in comparison to Cisplatin. Moreover, molecular docking investigations suggest that these compounds may function as potential inhibitors of proteins in brain and breast cells, exhibiting greater efficiency compared to Cisplatin.


Assuntos
Antineoplásicos , Vanadatos , Humanos , Simulação de Acoplamento Molecular , Vanadatos/química , Cisplatino/farmacologia , Cristalografia por Raios X , Estrutura Molecular , Antineoplásicos/química , Proliferação de Células
2.
ACS Omega ; 8(33): 30402-30409, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636906

RESUMO

Cis-2-iminothiazolidines and cis-thiazolidine-2-iminium tetrafluoroborates were successfully produced from trans-N-alkyl aziridine-2-carboxylates and phenyl/alkyl isothiocyanates mediated by zinc tetrafluoroborate in refluxing DCE. Reactions were performed via a complete regio- and stereoselective process to give the title iminothiazolidines and cis-thiazolidine-2-iminium salts in moderate to good yields (35 to 82%) with a wide substrate scope. In addition, the antibacterial activity evaluation of these compounds, as well as the minimum inhibitory concentration (MIC) determination, revealed that only four cis-thiazolidine-2-iminium salts showed growth inhibition against Bacillus cereus.

3.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35564294

RESUMO

Candida and dermatophyte infections are difficult to treat due to increasing antifungal drugs resistance such as fluconazole, as well as the emergence of multi-resistance in clinical bacteria. Here, we first synthesized silver nanoparticles using aqueous fruit extracts from Scabiosa atropurpurea subsp. maritima (L.). The characterization of the AgNPs by means of UV, XRD, FTIR, and TEM showed that the AgNPs had a uniform spherical shape with average sizes of 40-50 nm. The biosynthesized AgNPs showed high antioxidant activity when investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The AgNPs displayed strong antibacterial potential expressed by the maximum zone inhibition and the lowest MIC and MBC values. The AgNPs revealed a significant antifungal effect against the growth and biofilm of Candida species. In fact, the AgNPs were efficient against Trichophyton rubrum, Trichophyton interdigitale, and Microsporum canis. The antifungal mechanisms of action of the AgNPs seem to be due to the disruption of membrane integrity and a reduction in virulence factors (biofilm and hyphae formation and a reduction in germination). Finally, the silver nanoparticles also showed important cytotoxic activity against the human multiple myeloma U266 cell line and the human breast cancer cell line MDA-MB-231. Therefore, we describe new silver nanoparticles with promising biomedical application in the development of novel antimicrobial and anticancer agents.

4.
Arch Microbiol ; 204(4): 203, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247079

RESUMO

In this study, a successfully rapid, simple approach was applied for biosynthesis of silver nanoparticles AgNPs using for the first time the mixed leaves extract of Olea europaea subsp. europaea var. sylvestris and Pistacia lentiscus from natural association aimed to enhance their antimicrobial potential. The plant extract acts both as reducing and capping agents. When the aqueous extract was added to AgNO3 solution, the color was changed from pale to yellow to brown indicating the reduction of Ag ions and synthesis of silver nanoparticles (AgNPs) without any solvent or hazardous reagents. The green synthesized AgNPs were characterized by UV-Vis spectrophotometer, FTIR spectrum and the X-ray crystallography. The AgNPs showed superior antioxidant activity measured by DPPH, Ferric Antioxidant Reducing Power (FRAP) as well as the total antioxidant activity methods. Moreover, the analysis of phytochemical constituents including flavonoids, tannins, alkaloids and total polyphenols contents mentioned the most richness of the silver nanoparticles compared to plant extract. The new synthesized AgNPs demonstrated the bactericidal and fungicidal effects against all the tested bacterial and fungal strains and found to limit the spore germination of filamentous fungi. AgNPs also gave an anti-biofilm activity and synergistic effect with the conventional antibiotic's drugs. Here we firstly describe the silver nanoparticles effect on virulence factors of Candida species by reduction of enzymes like proteinase and phospholipase, inhibition of morphogenesis of Candida albicans cells. This natural product, acquiring these properties, should be promoted to be used in pharmaceutical and medical industries in future.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Olea , Pistacia , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/análise , Candida , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/química , Prata/farmacologia , Fatores de Virulência
5.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616010

RESUMO

The present paper described the first green synthesis of silver nanoparticles (AgNPs) from the extremophile plant Aeonium haworthii. The characterization of the biosynthesized silver nanoparticles was carried out by using UV-Vis, FTIR and STM analysis. The antioxidant, antidiabetic and antimicrobial properties were also reported. The newly described AgNPs were spherical in shape and had a size of 35-55 nm. The lowest IC50 values measured by the DPPH assay indicate the superior antioxidant behavior of our AgNPs as opposed to ascorbic acid. The silver nanoparticles show high antidiabetic activity determined by the inhibitory effect of α amylase as compared to the standard Acarbose. Moreover, the AgNPs inhibit bacterial growth owing to a bactericidal effect with the MIC values varying from 0.017 to 1.7 µg/mL. The antifungal action was evaluated against Candida albicans, Candida tropicalis, Candida glabrata, Candida sake and non-dermatophytic onychomycosis fungi. A strong inhibitory effect on Candida factors' virulence was observed as proteinase and phospholipase limitations. In addition, the microscopic observations show that the silver nanoparticles cause the eradication of blastospores and block filamentous morphogenesis. The combination of the antioxidant, antimicrobial and antidiabetic behaviors of the new biosynthesized silver nanoparticles highlights their promising use as natural phytomedicine agents.

6.
ACS Omega ; 5(24): 14786-14795, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596616

RESUMO

Bioactive compounds for drug discovery are increasingly extracted and purified from natural sources including marine organisms. Heparin is a therapeutic agent that has been used for several decades as an anticoagulant. However, heparin is known to cause many undesirable complications such as thrombocytopenia and risk of hemorrhage. Hence, there is a need to find alternatives to current widely used anticoagulant drugs. Here, we extract a sulfated polysaccharide from sea hare, that is, Bursatella leachii viscera, by enzymatic digestion. Several analytical approaches including elemental analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-performance liquid chromatography-mass spectrometry analysis show that B. leachii polysaccharides have chemical structures similar to glycosaminoglycans. We explore the anticoagulant activity of the B. leachii extract using the activated partial thromboplastin time and the thrombin time. Our results demonstrate that the extracted sulfated polysaccharide has heparin-like anticoagulant activity, thus showing great promise as an alternative anticoagulant therapy.

7.
Artigo em Inglês | MEDLINE | ID: mdl-24426989

RESUMO

In the title compound, (C6H9N2)[Cr(C2O4)2(H2O)2]·H2O, the Cr(III) atom adopts a slightly distorted octa-hedral coordination environment defined by two chelating oxalate ligands in the equatorial plane and two water mol-ecules in axial positions. A three-dimensional network is generated by inter-molecular N-H⋯O and O-H⋯O hydrogen-bonding interactions involving the cation, the complex anion and the lattice water molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...