Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 5: 105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159315

RESUMO

The creation of living heart valve replacements via tissue engineering is actively being pursued by many research groups. Numerous strategies have been described, aimed either at culturing autologous living valves in a bioreactor (in vitro) or inducing endogenous regeneration by the host via resorbable scaffolds (in situ). Whereas a lot of effort is being invested in the optimization of heart valve scaffold parameters and culturing conditions, the pathophysiological in vivo remodeling processes to which tissue-engineered heart valves are subjected upon implantation have been largely under-investigated. This is partly due to the unavailability of suitable immunohistochemical tools specific to sheep, which serves as the gold standard animal model in translational research on heart valve replacements. Therefore, the goal of this study was to comprise and validate a comprehensive sheep-specific panel of antibodies for the immunohistochemical analysis of tissue-engineered heart valve explants. For the selection of our panel we took inspiration from previous histopathological studies describing the morphology, extracellular matrix composition and cellular composition of native human heart valves throughout development and adult stages. Moreover, we included a range of immunological markers, which are particularly relevant to assess the host inflammatory response evoked by the implanted heart valve. The markers specifically identifying extracellular matrix components and cell phenotypes were tested on formalin-fixed paraffin-embedded sections of native sheep aortic valves. Markers for inflammation and apoptosis were tested on ovine spleen and kidney tissues. Taken together, this panel of antibodies could serve as a tool to study the spatiotemporal expression of proteins in remodeling tissue-engineered heart valves after implantation in a sheep model, thereby contributing to our understanding of the in vivo processes which ultimately determine long-term success or failure of tissue-engineered heart valves.

2.
Tissue Eng Part A ; 23(19-20): 1142-1151, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28314377

RESUMO

Decellularized tissue-engineered heart valves (DTEHVs) showed remarkable results in translational animal models, leading to recellularization within hours after implantation. This is crucial to enable tissue remodeling. To investigate if the presence of scaffold remnants before implantation is responsible for the fast recellularization of DTEHVs, an in vitro mesofluidic system was used. Human granulocyte and agranulocyte fractions were isolated, stained, brought back in suspension, and implemented in the system. Three different types of biomaterials were exposed to the circulating blood cells, consisting of decellularized tissue-engineered constructs (DTECs) with or without scaffold remnants or only bare scaffold. After 5 h of testing, the granulocyte fraction depleted faster from the circulation than the agranulocyte fraction. However, only granulocytes infiltrated into the DTEC with scaffold, migrating toward the scaffold remnants. The agranulocyte population, on the other hand, was only observed on the outer surface. Active cell infiltration was associated with increased levels of matrix metalloproteinase-1 secretion in the DTEC, including scaffold remnants. Proinflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor alpha (TNFα) were significantly upregulated in the DTEC without scaffold remnants. These results indicate that scaffold remnants can influence the immune response in DTEC, being responsible for rapid cell infiltration.


Assuntos
Células Sanguíneas/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adulto , Citocinas/metabolismo , Citometria de Fluxo , Coração/fisiologia , Humanos , Masculino
3.
3D Print Addit Manuf ; 4(1): 19-29, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32953940

RESUMO

The evolution of minimally invasive implantation procedures and the in vivo remodeling potential of decellularized tissue-engineered heart valves require stents with growth capacity to make these techniques available for pediatric patients. By means of computational tools and 3D printing technology, this proof-of-concept study demonstrates the design and manufacture of a polymer stent with a mechanical performance comparable to that of conventional nitinol stents used for heart valve implantation in animal trials. A commercially available 3D printing polymer was selected, and crush and crimping tests were conducted to validate the results predicted by the computational model. Finally, the degradability of the polymer was assessed via accelerated hydrolysis.

4.
Cells Tissues Organs ; 201(3): 159-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26989895

RESUMO

The use of valved stents for minimally invasive replacement of semilunar heart valves is expected to change the extracellular matrix and mechanical function of the native artery and may thus impair long-term functionality of the implant. Here we investigate the impact of the stent on matrix remodeling of the pulmonary artery in a sheep model, focusing on matrix composition and collagen (re)orientation of the host tissue. Ovine native pulmonary arteries were harvested 8 (n = 2), 16 (n = 4) and 24 (n = 2) weeks after transapical implantation of self-expandable stented heart valves. Second harmonic generation (SHG) microscopy was used to assess the collagen (re)orientation of fresh tissue samples. The collagen and elastin content was quantified using biochemical assays. SHG microscopy revealed regional differences in collagen organization in all explants. In the adventitial layer of the arterial wall far distal to the stent (considered as the control tissue), we observed wavy collagen fibers oriented in the circumferential direction. These circumferential fibers were more straightened in the adventitial layer located behind the stent. On the luminal side of the wall behind the stent, collagen fibers were aligned along the stent struts and randomly oriented between the struts. Immediately distal to the stent, however, fibers on both the luminal and the adventitial side of the wall were oriented in the axial direction, demonstrating the stent impact on the collagen structure of surrounding arterial tissues. Collagen orientation patterns did not change with implantation time, and biochemical analyses showed no changes in the trend of collagen and elastin content with implantation time or location of the vascular wall. We hypothesize that the collagen fibers on the adventitial side of the arterial wall and behind the stent straighten in response to the arterial stretch caused by oversizing of the stent. However, the collagen organization on the luminal side suggests that stent-induced remodeling is dominated by contact guidance.


Assuntos
Bioprótese , Colágeno/análise , Elastina/análise , Próteses Valvulares Cardíacas , Artéria Pulmonar/ultraestrutura , Stents , Animais , Valvas Cardíacas/cirurgia , Artéria Pulmonar/química , Ovinos , Engenharia Tecidual , Alicerces Teciduais/química
5.
PLoS One ; 11(2): e0149020, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26867221

RESUMO

There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation-but more pronounced in aortic valves-the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.


Assuntos
Criopreservação , Valvas Cardíacas/anatomia & histologia , Valvas Cardíacas/embriologia , Adolescente , Adulto , Fatores Etários , Valva Aórtica/anatomia & histologia , Valva Aórtica/embriologia , Valva Aórtica/patologia , Criança , Pré-Escolar , Criopreservação/métodos , Feto , Glicosaminoglicanos/química , Valvas Cardíacas/patologia , Hemodinâmica , Humanos , Lactente , Recém-Nascido , Microscopia de Fluorescência , Pessoa de Meia-Idade , Fenótipo , Valva Pulmonar/anatomia & histologia , Valva Pulmonar/embriologia , Valva Pulmonar/patologia , Estresse Mecânico , Resistência à Tração , Adulto Jovem
6.
Ann Biomed Eng ; 44(4): 1061-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26183964

RESUMO

Recent studies on decellularized tissue engineered heart valves (DTEHVs) showed rapid host cell repopulation and increased valvular insufficiency developing over time, associated with leaflet shortening. A possible explanation for this result was found using computational simulations, which revealed radial leaflet compression in the original valvular geometry when subjected to physiological pressure conditions. Therefore, an improved geometry was suggested to enable radial leaflet extension to counteract for host cell mediated retraction. In this study, we propose a solution to impose this new geometry by using a constraining bioreactor insert during culture. Human cell based DTEHVs (n = 5) were produced as such, resulting in an enlarged coaptation area and profound belly curvature. Extracellular matrix was homogeneously distributed, with circumferential collagen alignment in the coaptation region and global tissue anisotropy. Based on in vitro functionality experiments, these DTEHVs showed competent hydrodynamic functionality under physiological pulmonary conditions and were fatigue resistant, with stable functionality up to 16 weeks in vivo simulation. Based on implemented mechanical data, our computational models revealed a considerable decrease in radial tissue compression with the obtained geometrical adjustments. Therefore, these improved DTEHV are expected to be less prone to host cell mediated leaflet retraction and will remain competent after implantation.


Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas/fisiologia , Engenharia Tecidual , Fenômenos Biomecânicos , Colágeno , Humanos
7.
Tissue Eng Part A ; 22(1-2): 123-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26466917

RESUMO

Synthetic polymers are widely used to fabricate porous scaffolds for the regeneration of cardiovascular tissues. To ensure mechanical integrity, a balance between the rate of scaffold absorption and tissue formation is of high importance. A higher rate of tissue formation is expected in fast-degrading materials than in slow-degrading materials. This could be a result of synthetic cells, which aim to compensate for the fast loss of mechanical integrity of the scaffold by deposition of collagen fibers. Here, we studied the effect of fast-degrading polyglycolic acid scaffolds coated with poly-4-hydroxybutyrate (PGA-P4HB) and slow-degrading poly-ɛ-caprolactone (PCL) scaffolds on amount of tissue, composition, and mechanical characteristics in time, and compared these engineered values with values for native human heart valves. Electrospun PGA-P4HB and PCL scaffolds were either kept unseeded in culture or were seeded with human vascular-derived cells. Tissue formation, extracellular matrix (ECM) composition, remaining scaffold weight, tissue-to-scaffold weight ratio, and mechanical properties were analyzed every week up to 6 weeks. Mass of unseeded PCL scaffolds remained stable during culture, whereas PGA-P4HB scaffolds degraded rapidly. When seeded with cells, both scaffold types demonstrated increasing amounts of tissue with time, which was more pronounced for PGA-P4HB-based tissues during the first 2 weeks; however, PCL-based tissues resulted in the highest amount of tissue after 6 weeks. This study is the first to provide insight into the tissue-to-scaffold weight ratio, therewith allowing for a fair comparison between engineered tissues cultured on scaffolds as well as between native heart valve tissues. Although the absolute amount of ECM components differed between the engineered tissues, the ratio between ECM components was similar after 6 weeks. PCL-based tissues maintained their shape, whereas the PGA-P4HB-based tissues deformed during culture. After 6 weeks, PCL-based engineered tissues showed amounts of cells and ECM that were comparable to the number of human native heart valve leaflets, whereas values were lower in the PGA-P4HB-based tissues. Although increasing in time, the number of collagen crosslinks were below native values in all engineered tissues. In conclusion, this study indicates that slow-degrading scaffold materials are favored over fast-degrading materials to create organized ECM-rich tissues in vitro, which keep their three-dimensional structure before implantation.


Assuntos
Valvas Cardíacas , Poliésteres/química , Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células Cultivadas , Humanos
8.
Tissue Eng Part A ; 21(19-20): 2583-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26200255

RESUMO

Inflammation is a natural phase of the wound healing response, which can be harnessed for the in situ tissue engineering of small-diameter blood vessels using instructive, bioresorbable synthetic grafts. This process is dependent on colonization of the graft by host circulating cells and subsequent matrix formation. Typically, vascular regeneration in small animals is governed by transanastomotic cell ingrowth. However, this process is very rare in humans and hence less relevant for clinical translation. Therefore, a novel rat model was developed, in which cell ingrowth from the adjacent tissue is inhibited using Gore-Tex sheathing. Using this model, our aim here was to prove that functional blood vessels can be formed in situ through the host inflammatory response, specifically by blood-borne cells. The model was validated by implanting sex-mismatched aortic segments on either anastomoses of an electrospun poly(ɛ-caprolactone) (PCL) graft, filled with fibrin gel, into the rat abdominal aorta. Fluorescent in situ hybridization analysis revealed that after 1 and 3 months in vivo, over 90% of infiltrating cells originated from the bloodstream, confirming the effective shielding of transanastomotic cell ingrowth. Using the validated model, PCL/fibrin grafts were implanted, either or not loaded with monocyte chemotactic protein-1 (MCP-1), and cell infiltration and tissue development were investigated at various key time points in the healing cascade. A phased healing response was observed, initiated by a rapid influx of inflammatory cells, mediated by the local release of MCP-1. After 3 months in vivo, the grafts consisted of a medial layer with smooth muscle cells in an oriented collagen matrix, an intimal layer with elastin fibers, and confluent endothelium. This study proves the regenerative potential of cells in the circulatory system in the setting of in situ vascular tissue engineering.


Assuntos
Engenharia Tecidual/métodos , Animais , Prótese Vascular , Quimiocina CCL2/metabolismo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Miócitos de Músculo Liso/citologia , Poliésteres/química , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais/química
9.
Tissue Eng Part A ; 21(15-16): 2206-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26028124

RESUMO

BACKGROUND: Decellularized tissue-engineered heart valves (TEHVs) are under investigation as alternative for current heart valve prostheses with the potential to rapidly repopulate with cells within the body. Ideally, these valves are stented for transapical or minimally invasive delivery. It is unclear if and how the matrix of these valves remodels under in vivo hemodynamic loading conditions and in the presence of a stent. Here, we study the evolution of collagen orientation and tissue maturation in the wall of stented decellularized TEHVs with time after implantation. METHODS AND RESULTS: In a previous study, stented TEHVs based on rapidly degrading scaffolds were cultured in bioreactors, decellularized, and transapically implanted as pulmonary valve replacement in sheep. In the present study, collagen (re)orientation in the initially isotropic valvular wall was assessed using a fluorescent collagen probe combined with confocal imaging and image analysis of explanted tissue at 8, 16, and 24 weeks following implantation. Collagen tortuosity or waviness in the explants, as a measure of matrix maturity, was quantified using a Gabor wavelet method and compared with tortuosity in native sheep vascular wall tissue. Results indicate that on the luminal side of the valvular wall, fibers became aligned in circumferential direction, while tortuosity increased with implantation time, showing striking similarities with the native collagen structure after 24 weeks. On the outside of the wall, where the engineered tissue touches the stent, collagen fibers in the vicinity of the struts aligned along the struts, whereas collagen fibers in between struts were randomly oriented. Immunohistochemistry was performed to evaluate the presence of elastin and collagen type I and III. After 8 weeks, collagen types I and III were mostly present at the luminal side of the wall, whereas at 16 and 24 weeks, a homogenous distribution of collagen I and III was observed throughout the wall. Elastin was mostly expressed at the luminal side after 24 weeks. Biochemical assays showed that the amount of DNA (as a measure of cell number) increased significantly after 8 and 24 weeks, glycosaminoglycans increased significantly after 8, 16, and 24 weeks, and hydroxyproline, as a measure of collagen amount, increased significantly after 24 weeks compared to the controls. CONCLUSIONS: The collagen matrix in the wall of decellularized TEHVs shows clear structural remodeling and maturation with time. While collagen orientation rapidly remodels toward a native anisotropic architecture on the luminal side of the engineered valvular wall, it is dominated and guided by stent geometry on the outer side of the wall. Collagen tortuosity was increased with implantation time and was accompanied by an increase in elastin, especially on the luminal side of the vessel.


Assuntos
Bioprótese , Colágeno/metabolismo , Próteses Valvulares Cardíacas , Stents , Engenharia Tecidual , Animais , Implante de Prótese de Valva Cardíaca , Coelhos , Ovinos
10.
PLoS One ; 10(5): e0127847, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26016649

RESUMO

The collagen architecture is the major determinant of the function and mechanical behavior of cardiovascular tissues. In order to engineer a functional and load-bearing cardiovascular tissue with a structure that mimics the native tissue to meet in vivo mechanical demands, a complete understanding of the collagen orientation mechanism is required. Several methods have been used to visualize collagen architecture in tissue-engineered (TE) constructs, but they either have a limited imaging depth or have a complicated set up. In this study, Diffusion Tensor Imaging (DTI) is explored as a fast and reliable method to visualize collagen arrangement, and Confocal Laser Scanning Microscopy (CLSM) was used as a validation technique. Uniaxially constrained TE strips were cultured for 2 days, 10 days, 3 and 6 weeks to investigate the evolution of the collagen orientation with time. Moreover, a comparison of the collagen orientation in high and low aspect ratio (length/width) TE constructs was made with both methods. Both methods showed similar fiber orientation in TE constructs. Collagen fibers in the high aspect ratio samples were mostly aligned in the constrained direction, while the collagen fibers in low aspect ratio strips were mainly oriented in the oblique direction. The orientation changed to the oblique direction by extending culture time and could also be visualized. DTI captured the collagen orientation differences between low and high aspect ratio samples and with time. Therefore, it can be used as a fast, non-destructive and reliable tool to study the evolution of the collagen orientation in TE constructs.


Assuntos
Sistema Cardiovascular/diagnóstico por imagem , Colágeno/ultraestrutura , Células Cultivadas , Imagem de Tensor de Difusão/métodos , Humanos , Microscopia Confocal/métodos , Engenharia Tecidual/métodos , Ultrassonografia
11.
J Tissue Eng Regen Med ; 9(12): E289-301, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23677869

RESUMO

Tissue-engineered heart valves (TEHVs), based on polyglycolic acid (PGA) scaffolds coated with poly-4-hydroxybutyrate (P4HB), have shown promising in vivo results in terms of tissue formation. However, a major drawback of these TEHVs is compaction and retraction of the leaflets, causing regurgitation. To overcome this problem, the aim of this study was to investigate: (a) the use of the slowly degrading poly-ε-caprolactone (PCL) scaffold for prolonged mechanical integrity; and (b) the use of lower passage cells for enhanced tissue formation. Passage 3, 5 and 7 (P3, P5 and P7) human and ovine vascular-derived cells were seeded onto both PGA-P4HB and PCL scaffold strips. After 4 weeks of culture, compaction, tissue formation, mechanical properties and cell phenotypes were compared. TEHVs were cultured to observe retraction of the leaflets in the native-like geometry. After culture, tissues based on PGA-P4HB scaffold showed 50-60% compaction, while PCL-based tissues showed compaction of 0-10%. Tissue formation, stiffness and strength were increased with decreasing passage number; however, this did not influence compaction. Ovine PCL-based tissues did render less strong tissues compared to PGA-P4HB-based tissues. No differences in cell phenotype between the scaffold materials, species or cell passage numbers were observed. This study shows that PCL scaffolds may serve as alternative scaffold materials for human TEHVs with minimal compaction and without compromising tissue composition and properties, while further optimization of ovine TEHVs is needed. Reducing cell expansion time will result in faster generation of TEHVs, providing more rapid treatment for patients.


Assuntos
Valvas Cardíacas , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células Cultivadas , Humanos , Hidroxibutiratos/química , Células-Tronco Mesenquimais/citologia
12.
Cold Spring Harb Perspect Med ; 4(11): a013912, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25368013

RESUMO

Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial-mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function.


Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas/embriologia , Animais , Matriz Extracelular/fisiologia , Valvas Cardíacas/anatomia & histologia , Valvas Cardíacas/citologia , Humanos , Morfogênese/fisiologia , Engenharia Tecidual , Alicerces Teciduais
13.
Biomaterials ; 35(33): 9100-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112932

RESUMO

Mesenchymal stromal cells (MSC) play an important role in natural wound healing via paracrine and juxtacrine signaling to immune cells. The aim of this study was to identify the signaling factors secreted by preseeded cells in a biomaterial and their interaction with circulating leukocytes, in the presence of physiological biomechanical stimuli exerted by the hemodynamic environment (i.e. strain and shear flow). Electrospun poly(ε-caprolactone)-based scaffolds were seeded with human peripheral blood mononuclear cells (PBMC) or MSC. Protein secretion was analyzed under static conditions and cyclic strain. Subsequently, the cross-talk between preseeded cells and circulating leukocytes was addressed by exposing the scaffolds to a suspension of PBMC in static transwells and in pulsatile flow. Our results revealed that PBMC exposed to the scaffold consistently secreted a cocktail of immunomodulatory proteins under all conditions tested. Preseeded MSC, on the other hand, secreted the trophic factors MCP-1, VEGF and bFGF. Furthermore, we observed a synergistic upregulation of CXCL12 gene expression and a synergistic increase in bFGF protein production by preseeded MSC exposed to PBMC in pulsatile flow. These findings identify CXCL12 and bFGF as valuable targets for the development of safe and effective acellular instructive grafts for application in in situ cardiovascular regenerative therapies.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocina CXCL12/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tecido Adiposo/citologia , Células Cultivadas , Humanos , Leucócitos Mononucleares/metabolismo , Poliésteres/química , Engenharia Tecidual/métodos , Regulação para Cima , Cicatrização/fisiologia
14.
J Cell Mol Med ; 18(11): 2176-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25103256

RESUMO

Novel cardiovascular replacements are being developed by using degradable synthetic scaffolds, which function as a temporary guide to induce neotissue formation directly in situ. Priming of such scaffolds with fast-releasing monocyte chemoattractant protein-1 (MCP-1) was shown to improve the formation of functional neoarteries in rats. However, the underlying mechanism has not been clarified. Therefore, the goal of this study was to investigate the effect of a burst-release of MCP-1 from a synthetic scaffold on the local recruitment of circulating leucocytes under haemodynamic conditions. Herein, we hypothesized that MCP-1 initiates a desired healing cascade by recruiting favourable monocyte subpopulations into the implanted scaffold. Electrospun poly(ε-caprolactone) scaffolds were loaded with fibrin gel containing various doses of MCP-1 and exposed to a suspension of human peripheral blood mononuclear cells in static or dynamic conditions. In standard migration assay, a dose-dependent migration of specific CD14(+) monocyte subsets was observed, as measured by flow cytometry. In conditions of pulsatile flow, on the other hand, a marked increase in immediate monocyte recruitment was observed, but without evident selectivity in monocyte subsets. This suggests that the selectivity was dependent on the release kinetics of the MCP-1, as it was overruled by the effect of shear stress after the initial burst-release. Furthermore, these findings demonstrate that local recruitment of specific MCP-1-responsive monocytes is not the fundamental principle behind the improved neotissue formation observed in long-term in vivo studies, and mobilization of MCP-1-responsive cells from the bone marrow into the bloodstream is suggested to play a predominant role in vivo.


Assuntos
Quimiocina CCL2/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Leucócitos Mononucleares/citologia , Alicerces Teciduais , Implantes Absorvíveis , Animais , Contagem de Células , Células Cultivadas , Quimiocina CCL2/química , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Poliésteres/química , Ratos
15.
Biomaterials ; 35(18): 4919-28, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24661551

RESUMO

Implanted synthetic substrates for the regeneration of cardiovascular tissues are exposed to mechanical forces that induce local deformation. Circulating inflammatory cells, actively participating in the healing process, will be subjected to strain once recruited. We investigated the effect of deformation on human peripheral blood mononuclear cells (hPBMCs) adherent onto a scaffold, with respect to macrophage polarization towards an inflammatory (M1) and reparative (M2) phenotype and to early tissue formation. HPBMCs were seeded onto poly-ε-caprolactone bisurea strips and subjected to 0%, 7% and 12% cyclic strain for up to one week. After 1 day, cells subjected to 7% deformation showed upregulated expression of pro and anti-inflammatory chemokines, such as MCP-1 and IL10. Immunostaining revealed presence of inflammatory macrophages in all groups, while immunoregulatory macrophages were detected mainly in the 0 and 7% groups and increased significantly over time. Biochemical assays indicated deposition of sulphated glycosaminoglycans and collagen after 7 days in both strained and unstrained samples. These results suggest that 7% cyclic strain applied to hPBMCs adherent on a scaffold modulates their polarization towards reparative macrophages and allows for early synthesis of extracellular matrix components, required to promote further cell adhesion and proliferation and to bind immunoregulatory cytokines.


Assuntos
Forma Celular , Macrófagos/citologia , Regeneração , Alicerces Teciduais , Caproatos/química , Adesão Celular , Proliferação de Células , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-10/genética , Interleucina-10/metabolismo , Lactonas/química , Leucócitos Mononucleares/citologia , Fenótipo , Cicatrização/fisiologia
16.
J Am Coll Cardiol ; 63(13): 1320-1329, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24361320

RESUMO

OBJECTIVES: This study sought to evaluate long-term in vivo functionality, host cell repopulation, and remodeling of "off-the-shelf" tissue engineered transcatheter homologous heart valves. BACKGROUND: Transcatheter valve implantation has emerged as a valid alternative to conventional surgery, in particular for elderly high-risk patients. However, currently used bioprosthetic transcatheter valves are prone to progressive dysfunctional degeneration, limiting their use in younger patients. To overcome these limitations, the concept of tissue engineered heart valves with self-repair capacity has been introduced as next-generation technology. METHODS: In vivo functionality, host cell repopulation, and matrix remodeling of homologous transcatheter tissue-engineered heart valves (TEHVs) was evaluated up to 24 weeks as pulmonary valve replacements (transapical access) in sheep (n = 12). As a control, tissue composition and structure were analyzed in identical not implanted TEHVs (n = 5). RESULTS: Transcatheter implantation was successful in all animals. Valve functionality was excellent displaying sufficient leaflet motion and coaptation with only minor paravalvular leakage in some animals. Mild central regurgitation was detected after 8 weeks, increasing to moderate after 24 weeks, correlating to a compromised leaflet coaptation. Mean and peak transvalvular pressure gradients were 4.4 ± 1.6 mm Hg and 9.7 ± 3.0 mm Hg, respectively. Significant matrix remodeling was observed in the entire valve and corresponded with the rate of host cell repopulation. CONCLUSIONS: For the first time, the feasibility and long-term functionality of transcatheter-based homologous off-the-shelf tissue engineered heart valves are demonstrated in a relevant pre-clinical model. Such engineered heart valves may represent an interesting alternative to current prostheses because of their rapid cellular repopulation, tissue remodeling, and therewith self-repair capacity. The concept of homologous off-the-shelf tissue engineered heart valves may therefore substantially simplify previous tissue engineering concepts toward clinical translation.


Assuntos
Doenças das Valvas Cardíacas/cirurgia , Próteses Valvulares Cardíacas , Valvas Cardíacas , Engenharia Tecidual/tendências , Humanos
17.
J Biomech ; 47(9): 2064-9, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24268314

RESUMO

Preclinical studies of tissue-engineered heart valves (TEHVs) showed retraction of the heart valve leaflets as major failure of function mechanism. This retraction is caused by both passive and active cell stress and passive matrix stress. Cell-mediated retraction induces leaflet shortening that may be counteracted by the hemodynamic loading of the leaflets during diastole. To get insight into this stress balance, the amount and duration of stress generation in engineered heart valve tissue and the stress imposed by physiological hemodynamic loading are quantified via an experimental and a computational approach, respectively. Stress generation by cells was measured using an earlier described in vitro model system, mimicking the culture process of TEHVs. The stress imposed by the blood pressure during diastole on a valve leaflet was determined using finite element modeling. Results show that for both pulmonary and systemic pressure, the stress imposed on the TEHV leaflets is comparable to the stress generated in the leaflets. As the stresses are of similar magnitude, it is likely that the imposed stress cannot counteract the generated stress, in particular when taking into account that hemodynamic loading is only imposed during diastole. This study provides a rational explanation for the retraction found in preclinical studies of TEHVs and represents an important step towards understanding the retraction process seen in TEHVs by a combined experimental and computational approach.


Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas/fisiologia , Hemodinâmica , Humanos , Veia Safena/citologia , Estresse Mecânico , Engenharia Tecidual
18.
J Mater Chem B ; 2(3): 305-313, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261509

RESUMO

Electrospinning has proven to be a promising method to produce scaffolds for tissue engineering despite the frequently encountered limitations in 3-dimensional tissue formation due to a lack of cell infiltration. To fully unlock the potential of electrospun scaffolds for tissue engineering, the void space within the fibrous network needs to be increased substantially and in a controlled manner. Low-temperature electrospinning (LTE) increases the fiber to fiber distance by embedding ice particles as void spacers during fiber deposition. Scaffold porosities up to 99.5% can be reached and in line with the increase in void space, the mechanical properties of the scaffolds shift towards the range for native biological tissue. While both the physiological mechanical properties and high porosity were promising for tissue engineering applications, control of the porosity in three dimensions was still limited when using LTE methods. Based on a range of LTE spun scaffolds made of poly(lactic acid) and poly(ε-caprolactone), we found that changing the ratio between the rate of ice crystal formation and polymer fiber deposition only had a small effect on the 3D-porosity of the final scaffold architecture. Varying the fiber stiffness, however, offers considerable control over the scaffold void space.

19.
Biomaterials ; 34(30): 7269-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23810254

RESUMO

Heart valve tissue engineering based on decellularized xenogenic or allogenic starter matrices has shown promising first clinical results. However, the availability of healthy homologous donor valves is limited and xenogenic materials are associated with infectious and immunologic risks. To address such limitations, biodegradable synthetic materials have been successfully used for the creation of living autologous tissue-engineered heart valves (TEHVs) in vitro. Since these classical tissue engineering technologies necessitate substantial infrastructure and logistics, we recently introduced decellularized TEHVs (dTEHVs), based on biodegradable synthetic materials and vascular-derived cells, and successfully created a potential off-the-shelf starter matrix for guided tissue regeneration. Here, we investigate the host repopulation capacity of such dTEHVs in a non-human primate model with up to 8 weeks follow-up. After minimally invasive delivery into the orthotopic pulmonary position, dTEHVs revealed mobile and thin leaflets after 8 weeks of follow-up. Furthermore, mild-moderate valvular insufficiency and relative leaflet shortening were detected. However, in comparison to the decellularized human native heart valve control - representing currently used homografts - dTEHVs showed remarkable rapid cellular repopulation. Given this substantial in situ remodeling capacity, these results suggest that human cell-derived bioengineered decellularized materials represent a promising and clinically relevant starter matrix for heart valve tissue engineering. These biomaterials may ultimately overcome the limitations of currently used valve replacements by providing homologous, non-immunogenic, off-the-shelf replacement constructs.


Assuntos
Valvas Cardíacas/citologia , Valvas Cardíacas/fisiologia , Modelos Animais , Primatas/fisiologia , Engenharia Tecidual/métodos , Idoso , Animais , Forma Celular , DNA/metabolismo , Endotélio Vascular/ultraestrutura , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Valvas Cardíacas/ultraestrutura , Humanos , Imuno-Histoquímica , Implantes Experimentais , Interferometria , Microscopia Eletrônica de Varredura , Fenótipo , Implantação de Prótese
20.
Cell Tissue Res ; 352(3): 727-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23430473

RESUMO

Mechanical conditioning is often used to enhance collagen synthesis, remodeling and maturation and, hence, the structural and mechanical properties of engineered cardiovascular tissues. Intermittent straining, i.e., alternating periods of cyclic and static strain, has previously been shown to result in more mature tissue compared with continuous cyclic straining. Nevertheless, the underlying mechanism is unknown. We have determined the short-term effects of continuous cyclic strain and of cyclic strain followed by static strain at the gene expression level to improve insight into the mechano-regulatory mechanism of intermittent conditioning on collagen synthesis, remodeling and maturation. Tissue-engineered constructs, consisting of human vascular-derived cells seeded onto rapidly degrading PGA/P4HB scaffolds, were conditioned with 4% strain at 1 Hz for 3 h in order to study the immediate effects of cyclic strain (n=18). Next, the constructs were either subjected to ongoing cyclic strain (4% at 1 Hz; n=9) or to static strain (n=9). Expression levels of genes involved in collagen synthesis, remodeling and maturation were studied at various time points up to 24 h within each straining protocol. The results indicate that a period of static strain following cyclic strain favors collagen synthesis and remodeling, whereas ongoing cyclic strain shifts this balance toward collagen remodeling and maturation. The data suggest that, with prolonged culture, the conditioning protocol should be changed from intermittent straining to continuous cyclic straining to improve collagen maturation after its synthesis and, hence, the tissue (mechanical) properties.


Assuntos
Sistema Cardiovascular/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Estresse Mecânico , Engenharia Tecidual/métodos , Transcriptoma , Regulação da Expressão Gênica , Humanos , Reprodutibilidade dos Testes , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...