Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 411, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907836

RESUMO

BACKGROUND: Identifying variants associated with complex traits is a challenging task in genetic association studies due to linkage disequilibrium (LD) between genetic variants and population stratification, unrelated to the disease risk. Existing methods of population structure correction use principal component analysis or linear mixed models with a random effect when modeling associations between a trait of interest and genetic markers. However, due to stringent significance thresholds and latent interactions between the markers, these methods often fail to detect genuinely associated variants. RESULTS: To overcome this, we propose CluStrat, which corrects for complex arbitrarily structured populations while leveraging the linkage disequilibrium induced distances between genetic markers. It performs an agglomerative hierarchical clustering using the Mahalanobis distance covariance matrix of the markers. In simulation studies, we show that our method outperforms existing methods in detecting true causal variants. Applying CluStrat on WTCCC2 and UK Biobank cohorts, we found biologically relevant associations in Schizophrenia and Myocardial Infarction. CluStrat was also able to correct for population structure in polygenic adaptation of height in Europeans. CONCLUSIONS: CluStrat highlights the advantages of biologically relevant distance metrics, such as the Mahalanobis distance, which captures the cryptic interactions within populations in the presence of LD better than the Euclidean distance.


Assuntos
Polimorfismo de Nucleotídeo Único , Humanos , Marcadores Genéticos , Desequilíbrio de Ligação , Fenótipo , Análise por Conglomerados
2.
BMC Genom Data ; 24(1): 70, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986041

RESUMO

Complex disorders are caused by a combination of genetic, environmental and lifestyle factors, and their prevalence can vary greatly across different populations. The extent to which genetic risk, as identified by Genome Wide Association Study (GWAS), correlates to disease prevalence in different populations has not been investigated systematically. Here, we studied 14 different complex disorders and explored whether polygenic risk scores (PRS) based on current GWAS correlate to disease prevalence within Europe and around the world. A clear variation in GWAS-based genetic risk was observed based on ancestry and we identified populations that have a higher genetic liability for developing certain disorders. We found that for four out of the 14 studied disorders, PRS significantly correlates to disease prevalence within Europe. We also found significant correlations between worldwide disease prevalence and PRS for eight of the studied disorders with Multiple Sclerosis genetic risk having the highest correlation to disease prevalence. Based on current GWAS results, the across population differences in genetic risk for certain disorders can potentially be used to understand differences in disease prevalence and identify populations with the highest genetic liability. The study highlights both the limitations of PRS based on current GWAS but also the fact that in some cases, PRS may already have high predictive power. This could be due to the genetic architecture of specific disorders or increased GWAS power in some cases.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Prevalência , Fatores de Risco , Herança Multifatorial/genética
3.
Neuroimage ; 284: 120466, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995919

RESUMO

Alterations in subcortical brain structure volumes have been found to be associated with several neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain structure volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as instrument variables to identify potentially causal associations between an exposure and an outcome. The exposure data that we analyzed comprised genetic associations for 2994 plasma proteins, 237 metabolites, and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six metabolites were found to have a significant association with subcortical structure volumes, with nine proteins and five metabolites replicated using independent exposure data. We found causal associations between accumbens volume and plasma protease c1 inhibitor as well as strong association between putamen volume and Agouti signaling protein. Among metabolites, urate had the strongest association with thalamic volume. No significant associations were detected between the microbial genera and subcortical brain structure volumes. We also observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical brain structure volumes.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Estudo de Associação Genômica Ampla/métodos , Multiômica , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Biomarcadores , Imageamento por Ressonância Magnética/métodos
4.
Front Immunol ; 14: 1147573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809097

RESUMO

Introduction: Autoimmune disorders (ADs) are a group of about 80 disorders that occur when self-attacking autoantibodies are produced due to failure in the self-tolerance mechanisms. ADs are polygenic disorders and associations with genes both in the human leukocyte antigen (HLA) region and outside of it have been described. Previous studies have shown that they are highly comorbid with shared genetic risk factors, while epidemiological studies revealed associations between various lifestyle and health-related phenotypes and ADs. Methods: Here, for the first time, we performed a comparative polygenic risk score (PRS) - Phenome Wide Association Study (PheWAS) for 11 different ADs (Juvenile Idiopathic Arthritis, Primary Sclerosing Cholangitis, Celiac Disease, Multiple Sclerosis, Rheumatoid Arthritis, Psoriasis, Myasthenia Gravis, Type 1 Diabetes, Systemic Lupus Erythematosus, Vitiligo Late Onset, Vitiligo Early Onset) and 3,254 phenotypes available in the UK Biobank that include a wide range of socio-demographic, lifestyle and health-related outcomes. Additionally, we investigated the genetic relationships of the studied ADs, calculating their genetic correlation and conducting cross-disorder GWAS meta-analyses for the observed AD clusters. Results: In total, we identified 508 phenotypes significantly associated with at least one AD PRS. 272 phenotypes were significantly associated after excluding variants in the HLA region from the PRS estimation. Through genetic correlation and genetic factor analyses, we identified four genetic factors that run across studied ADs. Cross-trait meta-analyses within each factor revealed pleiotropic genome-wide significant loci. Discussion: Overall, our study confirms the association of different factors with genetic susceptibility for ADs and reveals novel observations that need to be further explored.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Vitiligo , Humanos , Doenças Autoimunes/genética , Diabetes Mellitus Tipo 1/genética , Antígenos HLA , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
medRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066330

RESUMO

Alterations in subcortical brain structure volumes have been found to be associated with several neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain structure volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as instrument variables to identify potentially causal associations between an exposure and an outcome. The exposure data that we analyzed comprised genetic associations for 2,994 plasma proteins, 237 metabolites, and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six metabolites were found to have a significant association with subcortical structure volumes. We found causal associations between amygdala volume and granzyme A as well as association between accumbens volume and plasma protease c1 inhibitor. Among metabolites, urate had the strongest association with thalamic volume. No significant associations were detected between the microbial genera and subcortical brain structure volumes. We also observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical brain structure volumes.

6.
Transl Psychiatry ; 13(1): 69, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823209

RESUMO

Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Diabetes Mellitus Tipo 2 , Síndrome de Tourette , Masculino , Feminino , Humanos , Síndrome de Tourette/genética , Transtorno do Espectro Autista/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Fatores de Risco
7.
Front Psychiatry ; 13: 958688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072455

RESUMO

Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.

8.
Sci Rep ; 12(1): 8242, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581276

RESUMO

The emergence of genome-wide association studies (GWAS) has led to the creation of large repositories of human genetic variation, creating enormous opportunities for genetic research and worldwide collaboration. Methods that are based on GWAS summary statistics seek to leverage such records, overcoming barriers that often exist in individual-level data access while also offering significant computational savings. Such summary-statistics-based applications include GWAS meta-analysis, with and without sample overlap, and case-case GWAS. We compare performance of leading methods for summary-statistics-based genomic analysis and also introduce a novel framework that can unify usual summary-statistics-based implementations via the reconstruction of allelic and genotypic frequencies and counts (ReACt). First, we evaluate ASSET, METAL, and ReACt using both synthetic and real data for GWAS meta-analysis (with and without sample overlap) and find that, while all three methods are comparable in terms of power and error control, ReACt and METAL are faster than ASSET by a factor of at least hundred. We then proceed to evaluate performance of ReACt vs an existing method for case-case GWAS and show comparable performance, with ReACt requiring minimal underlying assumptions and being more user-friendly. Finally, ReACt allows us to evaluate, for the first time, an implementation for calculating polygenic risk score (PRS) for groups of cases and controls based on summary statistics. Our work demonstrates the power of GWAS summary-statistics-based methodologies and the proposed novel method provides a unifying framework and allows further extension of possibilities for researchers seeking to understand the genetics of complex disease.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Genótipo , Humanos , Fenótipo
9.
Res Comput Mol Biol ; 13278: 86-106, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36649383

RESUMO

Principal component analysis (PCA) is a widely used dimensionality reduction technique in machine learning and multivariate statistics. To improve the interpretability of PCA, various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis (SPCA). In this paper, we present ThreSPCA, a provably accurate algorithm based on thresholding the Singular Value Decomposition for the SPCA problem, without imposing any restrictive assumptions on the input covariance matrix. Our thresholding algorithm is conceptually simple; much faster than current state-of-the-art; and performs well in practice. When applied to genotype data from the 1000 Genomes Project, ThreSPCA is faster than previous benchmarks, at least as accurate, and leads to a set of interpretable biomarkers, revealing genetic diversity across the world.

10.
Front Neurosci ; 15: 549322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889066

RESUMO

Recent neuroimaging studies have shown that functional connectomes are unique to individuals, i.e., two distinct fMRIs taken over different sessions of the same subject are more similar in terms of their connectomes than those from two different subjects. In this study, we present new results that identify specific parts of resting state and task-specific connectomes that are responsible for the unique signatures. We show that a very small part of the connectome can be used to derive features for discriminating between individuals. A network of these features is shown to achieve excellent training and test accuracy in matching imaging datasets. We show that these features are statistically significant, robust to perturbations, invariant across populations, and are localized to a small number of structural regions of the brain. Furthermore, we show that for task-specific connectomes, the regions identified by our method are consistent with their known functional characterization. We present a new matrix sampling technique to derive computationally efficient and accurate methods for identifying the discriminating sub-connectome and support all of our claims using state-of-the-art statistical tests and computational techniques.

11.
Mol Biol Evol ; 38(5): 1809-1819, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481022

RESUMO

India represents an intricate tapestry of population substructure shaped by geography, language, culture, and social stratification. Although geography closely correlates with genetic structure in other parts of the world, the strict endogamy imposed by the Indian caste system and the large number of spoken languages add further levels of complexity to understand Indian population structure. To date, no study has attempted to model and evaluate how these factors have interacted to shape the patterns of genetic diversity within India. We merged all publicly available data from the Indian subcontinent into a data set of 891 individuals from 90 well-defined groups. Bringing together geography, genetics, and demographic factors, we developed Correlation Optimization of Genetics and Geodemographics to build a model that explains the observed population genetic substructure. We show that shared language along with social structure have been the most powerful forces in creating paths of gene flow in the subcontinent. Furthermore, we discover the ethnic groups that best capture the diverse genetic substructure using a ridge leverage score statistic. Integrating data from India with a data set of additional 1,323 individuals from 50 Eurasian populations, we find that Indo-European and Dravidian speakers of India show shared genetic drift with Europeans, whereas the Tibeto-Burman speaking tribal groups have maximum shared genetic drift with East Asians.


Assuntos
Etnicidade/genética , Variação Genética , Idioma , Modelos Genéticos , Fatores Sociológicos , Geografia , Humanos , Índia
12.
IEEE Trans Inf Theory ; 66(8): 5003-5021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33746243

RESUMO

The von Neumann entropy, named after John von Neumann, is an extension of the classical concept of entropy to the field of quantum mechanics. From a numerical perspective, von Neumann entropy can be computed simply by computing all eigenvalues of a density matrix, an operation that could be prohibitively expensive for large-scale density matrices. We present and analyze three randomized algorithms to approximate von Neumann entropy of real density matrices: our algorithms leverage recent developments in the Randomized Numerical Linear Algebra (RandNLA) literature, such as randomized trace estimators, provable bounds for the power method, and the use of random projections to approximate the eigenvalues of a matrix. All three algorithms come with provable accuracy guarantees and our experimental evaluations support our theoretical findings showing considerable speedup with small loss in accuracy.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34421392

RESUMO

We initiate the study of numerical linear algebra in the sliding window model, where only the most recent W updates in a stream form the underlying data set. Although many existing algorithms in the sliding window model use or borrow elements from the smooth histogram framework (Braverman and Ostrovsky, FOCS 2007), we show that many interesting linear-algebraic problems, including spectral and vector induced matrix norms, generalized regression, and lowrank approximation, are not amenable to this approach in the row-arrival model. To overcome this challenge, we first introduce a unified row-sampling based framework that gives randomized algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and ℓ 1-subspace embeddings in the sliding window model, which often use nearly optimal space and achieve nearly input sparsity runtime. Our algorithms are based on "reverse online" versions of offline sampling distributions such as (ridge) leverage scores, ℓ 1 sensitivities, and Lewis weights to quantify both the importance and the recency of a row; our structural results on these distributions may be of independent interest for future algorithmic design. Although our techniques initially address numerical linear algebra in the sliding window model, our row-sampling framework rather surprisingly implies connections to the well-studied online model; our structural results also give the first sample optimal (up to lower order terms) online algorithm for low-rank approximation/projection-cost preservation. Using this powerful primitive, we give online algorithms for column/row subset selection and principal component analysis that resolves the main open question of Bhaskara et al. (FOCS 2019). We also give the first online algorithm for ℓ 1-subspace embeddings. We further formalize the connection between the online model and the sliding window model by introducing an additional unified framework for deterministic algorithms using a merge and reduce paradigm and the concept of online coresets, which we define as a weighted subset of rows of the input matrix that can be used to compute a good approximation to some given function on all of its prefixes. Our sampling based algorithms in the row-arrival online model yield online coresets, giving deterministic algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and ℓ 1-subspace embeddings in the sliding window model that use nearly optimal space.

14.
Ann Hum Genet ; 83(6): 373-388, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31192450

RESUMO

The medieval history of several populations often suffers from scarcity of contemporary records resulting in contradictory and sometimes biased interpretations by historians. This is the situation with the population of the island of Crete, which remained relatively undisturbed until the Middle Ages when multiple wars, invasions, and occupations by foreigners took place. Historians have considered the effects of the occupation of Crete by the Arabs (in the 9th and 10th centuries C.E.) and the Venetians (in the 13th to the 17th centuries C.E.) to the local population. To obtain insights on such effects from a genetic perspective, we studied representative samples from 17 Cretan districts using the Illumina 1 million or 2.5 million arrays and compared the Cretans to the populations of origin of the medieval conquerors and settlers. Highlights of our findings include (1) small genetic contributions from the Arab occupation to the extant Cretan population, (2) low genetic contribution of the Venetians to the extant Cretan population, and (3) evidence of a genetic relationship among the Cretans and Central, Northern, and Eastern Europeans, which could be explained by the settlement in the island of northern origin tribes during the medieval period. Our results show how the interaction between genetics and the historical record can help shed light on the historical record.


Assuntos
Genética Populacional , População Branca/genética , Cruzamentos Genéticos , Bases de Dados Genéticas , Etnicidade/genética , Variação Genética , Genética Populacional/história , Genoma Humano , Genômica/métodos , Genótipo , Geografia , Grécia , História Medieval , Migração Humana , Humanos , População Branca/história
15.
Bioinformatics ; 35(19): 3679-3683, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30957838

RESUMO

MOTIVATION: Principal Component Analysis is a key tool in the study of population structure in human genetics. As modern datasets become increasingly larger in size, traditional approaches based on loading the entire dataset in the system memory (Random Access Memory) become impractical and out-of-core implementations are the only viable alternative. RESULTS: We present TeraPCA, a C++ implementation of the Randomized Subspace Iteration method to perform Principal Component Analysis of large-scale datasets. TeraPCA can be applied both in-core and out-of-core and is able to successfully operate even on commodity hardware with a system memory of just a few gigabytes. Moreover, TeraPCA has minimal dependencies on external libraries and only requires a working installation of the BLAS and LAPACK libraries. When applied to a dataset containing a million individuals genotyped on a million markers, TeraPCA requires <5 h (in multi-threaded mode) to accurately compute the 10 leading principal components. An extensive experimental analysis shows that TeraPCA is both fast and accurate and is competitive with current state-of-the-art software for the same task. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are both available at https://github.com/aritra90/TeraPCA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Variação Genética , Genótipo , Humanos , Análise de Componente Principal
16.
BMC Bioinformatics ; 18(1): 341, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716001

RESUMO

BACKGROUND: The increasing volume and complexity of high-throughput genomic data make analysis and prioritization of variants difficult for researchers with limited bioinformatics skills. Variant Ranker allows researchers to rank identified variants and determine the most confident variants for experimental validation. RESULTS: We describe Variant Ranker, a user-friendly simple web-based tool for ranking, filtering and annotation of coding and non-coding variants. Variant Ranker facilitates the identification of causal variants based on novelty, effect and annotation information. The algorithm implements and aggregates multiple prediction algorithm scores, conservation scores, allelic frequencies, clinical information and additional open-source annotations using accessible databases via ANNOVAR. The available information for a variant is transformed into user-specified weights, which are in turn encoded into the ranking algorithm. Through its different modules, users can (i) rank a list of variants (ii) perform genotype filtering for case-control samples (iii) filter large amounts of high-throughput data based on user custom filter requirements and apply different models of inheritance (iv) perform downstream functional enrichment analysis through network visualization. Using networks, users can identify clusters of genes that belong to multiple ontology categories (like pathways, gene ontology, disease categories) and therefore expedite scientific discoveries. We demonstrate the utility of Variant Ranker to identify causal genes using real and synthetic datasets. Our results indicate that Variant Ranker exhibits excellent performance by correctly identifying and ranking the candidate genes CONCLUSIONS: Variant Ranker is a freely available web server on http://paschou-lab.mbg.duth.gr/Software.html . This tool will enable users to prioritise potentially causal variants and is applicable to a wide range of sequencing data.


Assuntos
Variação Genética , Genômica/métodos , Software , Algoritmos , Frequência do Gene , Ontologia Genética , Genótipo , Humanos , Internet , Análise de Sequência de DNA
17.
Eur J Hum Genet ; 25(5): 637-645, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28272534

RESUMO

Peloponnese has been one of the cradles of the Classical European civilization and an important contributor to the ancient European history. It has also been the subject of a controversy about the ancestry of its population. In a theory hotly debated by scholars for over 170 years, the German historian Jacob Philipp Fallmerayer proposed that the medieval Peloponneseans were totally extinguished by Slavic and Avar invaders and replaced by Slavic settlers during the 6th century CE. Here we use 2.5 million single-nucleotide polymorphisms to investigate the genetic structure of Peloponnesean populations in a sample of 241 individuals originating from all districts of the peninsula and to examine predictions of the theory of replacement of the medieval Peloponneseans by Slavs. We find considerable heterogeneity of Peloponnesean populations exemplified by genetically distinct subpopulations and by gene flow gradients within Peloponnese. By principal component analysis (PCA) and ADMIXTURE analysis the Peloponneseans are clearly distinguishable from the populations of the Slavic homeland and are very similar to Sicilians and Italians. Using a novel method of quantitative analysis of ADMIXTURE output we find that the Slavic ancestry of Peloponnesean subpopulations ranges from 0.2 to 14.4%. Subpopulations considered by Fallmerayer to be Slavic tribes or to have Near Eastern origin, have no significant ancestry of either. This study rejects the theory of extinction of medieval Peloponneseans and illustrates how genetics can clarify important aspects of the history of a human population.


Assuntos
DNA Antigo/química , Migração Humana , Linhagem , População Branca/genética , Idoso , Idoso de 80 Anos ou mais , Genoma Humano , Genótipo , Grécia , Humanos , Modelos Genéticos
18.
Front Neurosci ; 10: 428, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708560

RESUMO

Although the genetic basis of Tourette Syndrome (TS) remains unclear, several candidate genes have been implicated. Using a set of 382 TS individuals of European ancestry we investigated four candidate genes for TS (HDC, SLITRK1, BTBD9, and SLC6A4) in an effort to identify possibly causal variants using a targeted re-sequencing approach by next generation sequencing technology. Identification of possible disease causing variants under different modes of inheritance was performed using the algorithms implemented in VAAST. We prioritized variants using Variant ranker and validated five rare variants via Sanger sequencing in HDC and SLITRK1, all of which are predicted to be deleterious. Intriguingly, one of the identified variants is in linkage disequilibrium with a variant that is included among the top hits of a genome-wide association study for response to citalopram treatment, an antidepressant drug with off-label use also in obsessive compulsive disorder. Our findings provide additional evidence for the implication of these two genes in TS susceptibility and the possible role of these proteins in the pathobiology of TS should be revisited.

19.
Front Neurosci ; 10: 384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27601976

RESUMO

Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple motor and phonic tics with a fluctuating course of intensity, frequency, and severity. Up to 90% of patients with GTS present with comorbid conditions, most commonly attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), thus providing an excellent model for the exploration of shared etiology across disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex etiology of the onset and clinical course of GTS, investigate the neurobiological underpinnings of GTS and related disorders, translate research findings into clinical applications, and establish a pan-European infrastructure for the study of GTS. This includes the challenges of (i) assembling a large genetic database for the evaluation of the genetic architecture with high statistical power; (ii) exploring the role of gene-environment interactions including the effects of epigenetic phenomena; (iii) employing endophenotype-based approaches to understand the shared etiology between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS; (v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including the dissemination of scientific knowledge about GTS to the public. Fifteen partners from academia and industry and 12 PhD candidates pursue the project. Here, we aim to share the design of an interdisciplinary project, showcasing the potential of large-scale collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex etiology and neurobiological underpinnings of GTS, translate research findings into clinical applications, and establish Pan-European infrastructure for the study of GTS and associated disorders.

20.
Front Neurosci ; 10: 340, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499730

RESUMO

Gilles de la Tourette Sydrome (TS) is a childhood onset neurodevelopmental disorder, characterized phenotypically by the presence of multiple motor and vocal tics. It is often accompanied by multiple psychiatric comorbidities, with Attention Deficit/Hyperactivity Disorder (ADHD) among the most common. The extensive co-occurrence of the two disorders suggests a shared genetic background. A major step toward the elucidation of the genetic architecture of TS was undertaken by the first TS Genome-wide Association Study (GWAS) reporting 552 SNPs that were moderately associated with TS (p < 1E-3). Similarly, initial ADHD GWAS attempts and meta-analysis were not able to produce genome-wide significant findings, but have provided insight to the genetic basis of the disorder. Here, we examine the common genetic background of the two neuropsychiatric phenotypes, by meta-analyzing the 552 top hits in the TS GWAS with the results of ADHD first GWASs. We identify 19 significant SNPs, with the top four implicated genes being TBC1D7, GUCY1A3, RAP1GDS1, and CHST11. TBCD17 harbors the top scoring SNP, rs1866863 (p:3.23E-07), located in a regulatory region downstream of the gene, and the third best-scoring SNP, rs2458304 (p:2.54E-06), located within an intron of the gene. Both variants were in linkage disequilibrium with eQTL rs499818, indicating a role in the expression levels of the gene. TBC1D7 is the third subunit of the TSC1/TSC2 complex, an inhibitor of the mTOR signaling pathway, with a central role in cell growth and autophagy. The top genes implicated by our study indicate a complex and intricate interplay between them, warranting further investigation into a possibly shared etiological mechanism for TS and ADHD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...