Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783847

RESUMO

Fire shapes animal communities by altering resource availability and species interactions, including between predators and prey. In Australia, there is particular concern that two highly damaging invasive predators, the feral cat (Felis catus) and European red fox (Vulpes vulpes), increase their activity in recently burnt areas and exert greater predation pressure on the native prey due to their increased exposure. We tested how prescribed fire occurrence and extent, along with fire history, vegetation, topography, and distance to anthropogenic features (towns and farms), affected the activity (detection frequency) of cats, foxes, and the native mammal community in south-eastern Australia. We used camera traps to quantify mammal activity before and after a prescribed burn and statistically tested how the fire interacted with these habitat variables to affect mammal activity. We found little evidence that the prescribed fire influenced the activity of cats and foxes and no evidence of an effect on kangaroo or small mammal (<800 g) activity. Medium-sized mammals (800-2000 g) were negatively associated with prescribed fire extent, suggesting that prescribed fire has a negative impact on these species in the short term. The lack of a clear activity increase from cats and foxes is likely a positive outcome from a fire management perspective. However, we highlight that their response is likely dependent upon factors like fire size, severity, and prey availability. Future experiments should incorporate GPS-trackers to record fine-scale movements of cats and foxes in temperate ecosystems immediately before and after prescribed fire to best inform management within protected areas.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37876142

RESUMO

Human well-being is dependent on the health of our planet. Biodiversity-related citizen science supports conservation research, and there is increasing interest in its potential as a health co-benefits intervention. This randomized controlled study investigates the health co-benefits of biodiversity citizen science participation. Seventy participants were randomly assigned to a citizen science project or control group for an 8-month period. Both groups completed pre- and post-intervention surveys, evaluating nature relatedness, self-efficacy related to biodiversity loss, subjective well-being, and climate change anxiety. A subset (N = 13) of participants engaged in the citizen science project also took part in focus group discussions. The intervention group reported a significant increase in nature relatedness and self-efficacy to help address issues of biodiversity loss. Although no significant changes were observed for other well-being or anxiety scales, most participants reported positive outcomes related to mental or physical well-being in focus groups. There were stronger positive effects for participants without previous environmental volunteering experience. These results suggest that citizen science participation has the potential to contribute to Planetary Health goals, with sustained co-benefits for well-being and nature relatedness. Future interventions evaluating co-benefits should consider previous environmental volunteering experience and focus on participants with little experience to maximize health outcomes.

3.
Glob Chang Biol ; 29(17): 4949-4965, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401520

RESUMO

Ecosystem disturbance is increasing in extent, severity and frequency across the globe. To date, research has largely focussed on the impacts of disturbance on animal population size, extinction risk and species richness. However, individual responses, such as changes in body condition, can act as more sensitive metrics and may provide early warning signs of reduced fitness and population declines. We conducted the first global systematic review and meta-analysis investigating the impacts of ecosystem disturbance on reptile and amphibian body condition. We collated 384 effect sizes representing 137 species from 133 studies. We tested how disturbance type, species traits, biome and taxon moderate the impacts of disturbance on body condition. We found an overall negative effect of disturbance on herpetofauna body condition (Hedges' g = -0.37, 95% CI: -0.57, -0.18). Disturbance type was an influential predictor of body condition response and all disturbance types had a negative mean effect. Drought, invasive species and agriculture had the largest effects. The impact of disturbance varied in strength and direction across biomes, with the largest negative effects found within Mediterranean and temperate biomes. In contrast, taxon, body size, habitat specialisation and conservation status were not influential predictors of disturbance effects. Our findings reveal the widespread effects of disturbance on herpetofauna body condition and highlight the potential role of individual-level response metrics in enhancing wildlife monitoring. The use of individual response metrics alongside population and community metrics would deepen our understanding of disturbance impacts by revealing both early impacts and chronic effects within affected populations. This could enable early and more informed conservation management.


Assuntos
Anfíbios , Ecossistema , Animais , Anfíbios/fisiologia , Animais Selvagens , Espécies Introduzidas , Répteis/fisiologia
4.
Sensors (Basel) ; 22(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684718

RESUMO

Current camera traps use passive infrared triggers; therefore, they only capture images when animals have a substantially different surface body temperature than the background. Endothermic animals, such as mammals and birds, provide adequate temperature contrast to trigger cameras, while ectothermic animals, such as amphibians, reptiles, and invertebrates, do not. Therefore, a camera trap that is capable of monitoring ectotherms can expand the capacity of ecological research on ectothermic animals. This study presents the design, development, and evaluation of a solar-powered and artificial-intelligence-assisted camera trap system with the ability to monitor both endothermic and ectothermic animals. The system is developed using a central processing unit, integrated graphics processing unit, camera, infrared light, flash drive, printed circuit board, solar panel, battery, microphone, GPS receiver, temperature/humidity sensor, light sensor, and other customized circuitry. It continuously monitors image frames using a motion detection algorithm and commences recording when a moving animal is detected during the day or night. Field trials demonstrate that this system successfully recorded a high number of animals. Lab testing using artificially generated motion demonstrated that the system successfully recorded within video frames at a high accuracy of 0.99, providing an optimized peak power consumption of 5.208 W. No water or dust entered the cases during field trials. A total of 27 cameras saved 85,870 video segments during field trials, of which 423 video segments successfully recorded ectothermic animals (reptiles, amphibians, and arthropods). This newly developed camera trap will benefit wildlife biologists, as it successfully monitors both endothermic and ectothermic animals.


Assuntos
Animais Selvagens , Mamíferos , Algoritmos , Animais
5.
Proc Biol Sci ; 288(1947): 20202633, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33784871

RESUMO

Foundation species interact strongly with other species to profoundly influence communities, such as by providing food, refuge from predators or beneficial microclimates. We tested relative support for these mechanisms using spinifex grass (Triodia spp.), which is a foundation species of arid Australia that provides habitat for diverse lizard communities. We first compared the attributes of live and dead spinifex, bare ground and a structurally similar plant (Lomandra effusa), and then tested the relative strength of association of two spinifex specialist lizard species (Ctenophorus spinodomus and Ctenotus atlas) with spinifex using a mesocosm experiment. Temperatures were coolest within spinifex compared to bare ground and Lomandra. Invertebrate abundance and the threat of predation were indistinguishable between treatments, suggesting temperature attenuation may be a more important driver. Overall, the dragon C. spinodomus preferred live over dead spinifex, while the skink C. atlas preferred dead spinifex, particularly at warmer air temperatures. However, both species displayed individual variability in their use of available microhabitats, with some individuals rarely using spinifex. Our results provide an example of temperature attenuation by a foundation species driving niche use by ectothermic animals.


Assuntos
Lagartos , Animais , Austrália , Ecossistema , Comportamento Predatório , Temperatura
6.
Nat Ecol Evol ; 5(4): 513-519, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33526889

RESUMO

Disturbance and habitat modification by humans can alter animal movement, leading to negative impacts on fitness, survival and population viability. However, the ubiquity and nature of these impacts across diverse taxa has not been quantified. We compiled 208 studies on 167 species from terrestrial and aquatic ecosystems across the globe to assess how human disturbance influences animal movement. We show that disturbance by humans has widespread impacts on the movements of birds, mammals, reptiles, amphibians, fish and arthropods. More than two-thirds of 719 cases represented a change in movement of 20% or more, with increases in movement averaging 70% and decreases -37%. Disturbance from human activities, such as recreation and hunting, had stronger impacts on animal movement than habitat modification, such as logging and agriculture. Our results point to a global restructuring of animal movement and emphasize the need to reduce the negative impacts of humans on animal movement.


Assuntos
Anfíbios , Ecossistema , Animais , Aves , Humanos , Mamíferos , Répteis
7.
Biol Rev Camb Philos Soc ; 96(3): 976-998, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561321

RESUMO

Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented, fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation, the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.


Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Florestas , Humanos , Plantas
8.
Trends Ecol Evol ; 35(4): 305-307, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952836

Assuntos
Incêndios , Plantas
9.
Conserv Lett ; 12(3): e12620, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423150

RESUMO

Species' movements affect their response to environmental change but movement knowledge is often highly uncertain. We now have well-established methods to integrate movement knowledge into conservation practice but still lack a framework to deal with uncertainty in movement knowledge for environmental decisions. We provide a framework that distinguishes two dimensions of species' movement that are heavily influenced by uncertainty: knowledge about movement and relevance of movement to environmental decisions. Management decisions can be informed by their position in this knowledge-relevance space. We then outline a framework to support decisions around (1) increasing understanding of the relevance of movement knowledge, (2) increasing robustness of decisions to uncertainties and (3) improving knowledge on species' movement. Our decision-support framework provides guidance for managing movement-related uncertainty in systematic conservation planning, agri-environment schemes, habitat restoration and international biodiversity policy. It caters to different resource levels (time and funding) so that species' movement knowledge can be more effectively integrated into environmental decisions.

11.
Biol Rev Camb Philos Soc ; 94(3): 981-998, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30565370

RESUMO

Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.


Assuntos
Ecossistema , Incêndios , Atividade Motora , Animais , Conservação dos Recursos Naturais , Dinâmica Populacional
12.
Trends Ecol Evol ; 33(11): 809-812, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30243834

RESUMO

Conservation targets perform beneficial auxiliary functions that are rarely acknowledged, including raising awareness, building partnerships, promoting investment, and developing new knowledge. Building on these auxiliary functions could enable more rapid progress towards current targets and inform the design of future targets.


Assuntos
Conservação dos Recursos Naturais/métodos , Políticas , Conservação dos Recursos Naturais/economia , Política , Opinião Pública
13.
Oecologia ; 188(3): 645-657, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29872917

RESUMO

Land-use change due to agriculture has a major influence on arthropod biodiversity, and may influence species differently depending on their traits. It is unclear how species traits vary across different land uses and their edges, with most studies focussing on single habitat types and overlooking edge effects. We examined variation in morphological traits of carabid beetles (Coleoptera:Carabidae) on both sides of edges between woodlands and four adjoining, but contrasting farmland uses in an agricultural landscape. We asked: (1) how do traits differ between woodlands and different adjoining farmland uses (crop, fallow, restoration planting, and woody debris applied over crop), and do effects depend on increasing distances from the farmland-woodland edge? (2) Does vegetation structure explain observed effects of adjoining farmland use and edge effects on these traits? We found that carabid communities varied in body size and shape, including traits associated with diet, robustness, and visual ability. Smaller sized species were associated with woodlands and larger sized species with farmlands. Farmland use further influenced these associations, where woodlands adjoining plantings supported smaller species, while fallows and crops supported larger species. Vegetation structure significantly influenced body size, flying ability, and body shape, and helped explain the effects of farmland use and distance from edges on body size. We highlight the important role of vegetation structure, farmland use, and edge effects in filtering the morphological traits of carabid assemblages across a highly modified agricultural landscape. Our findings suggest that farmland management can influence body size and dispersal-related traits in farmland and adjacent native vegetation.


Assuntos
Besouros , Animais , Biodiversidade , Ecossistema , Fazendas , Florestas
14.
Nat Ecol Evol ; 2(5): 775-781, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29581587

RESUMO

The Convention on Biological Diversity and its Strategic Plan for Biodiversity 2011-2020 form the central pillar of the world's conservation commitment, with 196 signatory nations; yet its capacity to reign in catastrophic biodiversity loss has proved inadequate. Indicators suggest that few of the Convention on Biological Diversity's Aichi targets that aim to reduce biodiversity loss will be met by 2020. While the indicators have been criticized for only partially representing the targets, a bigger problem is that the indicators do not adequately draw attention to and measure all of the drivers of the biodiversity crisis. Here, we show that many key drivers of biodiversity loss are either poorly evaluated or entirely lacking indicators. We use a biodiversity-crisis hierarchy as a conceptual model linking drivers of change to biodiversity loss to evaluate the scope of current indicators. We find major gaps related to monitoring governments, human population size, corruption and threat-industries. We recommend the hierarchy is used to develop an expanded set of indicators that comprehensively monitor the human behaviour and institutions that drive biodiversity loss and that, so far, have impeded progress towards achieving global biodiversity targets.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Modelos Biológicos
15.
Proc Biol Sci ; 285(1870)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29298935

RESUMO

Habitat conversion in production landscapes is among the greatest threats to biodiversity, not least because it can disrupt animal movement. Using the movement ecology framework, we review animal movement in production landscapes, including areas managed for agriculture and forestry. We consider internal and external drivers of altered animal movement and how this affects navigation and motion capacities and population dynamics. Conventional management approaches in fragmented landscapes focus on promoting connectivity using structural changes in the landscape. However, a movement ecology perspective emphasizes that manipulating the internal motivations or navigation capacity of animals represents untapped opportunities to improve movement and the effectiveness of structural connectivity investments. Integrating movement and landscape ecology opens new opportunities for conservation management in production landscapes.


Assuntos
Agricultura , Migração Animal , Conservação dos Recursos Naturais , Florestas , Animais , Biodiversidade , Ecossistema , Humanos , Dinâmica Populacional , Dispersão de Sementes
16.
Trends Ecol Evol ; 33(3): 147-148, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274664

Assuntos
Ecossistema
17.
Oecologia ; 184(4): 825-833, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28707112

RESUMO

Emerging pathogens can drive evolutionary shifts in host life-history traits, yet this process remains poorly documented in vertebrate hosts. Amphibian chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is the worst recorded wildlife disease and has caused the extinction of over 100 species across multiple continents. A similar number of additional species have experienced mass declines and Bd remains a major source of mortality in many populations of declined species now persisting with the pathogen. Life-history theory predicts that increased extrinsic mortality in Bd-infected populations may alter amphibian life-history traits, but this has not been examined. Here, we investigate whether population Bd status is associated with age and size at maturity by comparing long-exposed Bd-infected populations, Bd-free populations, and museum specimens collected prior to Bd emergence for the endangered Australian frog Litoria verreauxii alpina. We show that Bd-infected populations have a higher proportion of males that mature at 1 year of age, and females that mature at 2 years of age, compared to Bd-free populations. Earlier maturation was associated with reduced size at maturity in males. Consistent with life-history theory, our findings may represent an adaptive evolutionary shift towards earlier maturation in response to high Bd-induced mortality. To our knowledge, this study provides the first evidence for a post-metamorphic Bd-associated shift in an amphibian life-history trait. Given high mortality in other Bd-challenged species, we suggest that chytridiomycosis may be a substantial new selection pressure shaping life-history traits in impacted amphibian species across multiple continents.


Assuntos
Anuros , Micoses , Animais , Anuros/microbiologia , Austrália , Quitridiomicetos , Feminino , Masculino , Micoses/microbiologia
18.
Nature ; 542(7640): 165, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179658
19.
Ecology ; 98(3): 807-819, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27987325

RESUMO

Habitat loss and fragmentation are major threats to biodiversity and ecosystem processes. Our current understanding of the impacts of habitat loss and fragmentation is based largely on studies that focus on either short-term or long-term responses. Short-term responses are often used to predict long-term responses and make management decisions. The lack of studies comparing short- and long-term responses to fragmentation means we do not adequately understand when and how well short-term responses can be extrapolated to predict long-term responses, and when or why they cannot. To address this gap, we used data from one of the world's longest-running fragmentation experiments, The Wog Wog Habitat Fragmentation Experiment. Using data for carabid beetles, we found that responses in the long term (more than 22 yr post-fragmentation ≈22 generations) often contrasted markedly with those in the short term (5 yr post-fragmentation). The total abundance of all carabids, species richness and the occurrence of six species declined in the short term in the fragments but increased over the long term. The occurrence of three species declined initially and continued to decline, whilst another species was positively affected initially but decreased in the long term. Species' responses to the matrix that surrounds the fragments strongly predicted both the direction (increase/decline in occurrence) and magnitude of their responses to fragmentation. Additionally, species' responses to the matrix were somewhat predicted by their preferences for different types of native habitat (open vs. shaded). Our study highlights the degree of the matrix's influence in fragmented landscapes, and how this influence can change over time. We urge caution in using short-term responses to forecast long-term responses in cases where the matrix (1) impacts species' responses to fragmentation (by isolating them, creating new habitat or altering fragment habitat) and (2) is likely to change through time.


Assuntos
Ecossistema , Animais , Biodiversidade , Besouros
20.
Conserv Biol ; 31(3): 592-600, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27594575

RESUMO

Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species.


Assuntos
Anuros , Quitridiomicetos/patogenicidade , Conservação dos Recursos Naturais , Micoses/veterinária , Animais , Austrália , Espécies em Perigo de Extinção , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...