Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 11: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681795

RESUMO

The adaptation to chronic stress is highly variable across individuals. Resilience to stress is a complex process recruiting various brain regions and neurotransmitter systems. The aim of this study was to investigate the involvement of endogenous opioid enkephalin (ENK) signaling in the development of stress resilience in mice. The translational model of repeated social defeat (RSD) stress was selected to mimic the unpredictable disruptions of daily life and induce resilience or vulnerability to stress. As in humans, adult C57BL/6J mice demonstrated a great variability in their response to stress under this paradigm. A social interaction (SI) test was used to discriminate between the phenotypes of resilience or vulnerability to stress. After social defeat, the expression levels of ENK mRNA and their delta opioid receptors (DOPr) were quantified in the basolateral amygdala (BLA) and BLA-target areas by in situ hybridization. In this manner, ENK mRNA levels were found to decrease in the BLA and those of DOPr in the ventral hippocampus (HPC) CA1 of vulnerable mice only. Stimulating the DOPr pathway during social defeat by pharmacological treatment with the nonpeptide, selective DOPr agonist SNC80 further induced a resilient phenotype in a majority of stressed animals, with the proportion of resilient ones increasing from 33% to 58% of the total population. Ultrastructural analyses additionally revealed a reduction of oxidative stress markers in the pyramidal cells and interneurons of the ventral HPC CA1 upon SNC80 treatment, thus proposing a mechanism by which ENK-DOPr signaling may prevent the deleterious effects of chronic social stress.

2.
Neural Plast ; 2017: 1546125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781901

RESUMO

Psychological stress is a state of mental or emotional strain or tension that results from adverse or demanding circumstances. Chronic stress is well known to induce anxiety disorders and major depression; it is also considered a risk factor for Alzheimer's disease. Stress resilience is a positive outcome that is associated with preserved cognition and healthy aging. Resilience presents psychological and biological characteristics intrinsic to an individual conferring protection against the development of psychopathologies in the face of adversity. How can we promote or improve resilience to chronic stress? Numerous studies have proposed mechanisms that could trigger this desirable process. The roles of enkephalin transmission in the control of pain, physiological functions, like respiration, and affective disorders have been studied for more than 30 years. However, their role in the resilience to chronic stress has received much less attention. This review presents the evidence for an emerging involvement of enkephalin signaling through its two associated opioid receptors, µ opioid peptide receptor and δ opioid peptide receptor, in the natural adaptation to stressful lifestyles.


Assuntos
Encéfalo/metabolismo , Encefalinas/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Animais , Emoções , Humanos , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais
3.
J Comp Neurol ; 524(12): 2462-78, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780036

RESUMO

EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Cerebelo/metabolismo , Cerebelo/ultraestrutura , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Receptor EphA7/biossíntese , Receptor EphA7/ultraestrutura , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
4.
Sleep ; 39(3): 613-24, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26612390

RESUMO

STUDY OBJECTIVES: Optimal sleep is ensured by the interaction of circadian and homeostatic processes. Although synaptic plasticity seems to contribute to both processes, the specific players involved are not well understood. The EphA4 tyrosine kinase receptor is a cell adhesion protein regulating synaptic plasticity. We investigated the role of EphA4 in sleep regulation using electrocorticography in mice lacking EphA4 and gene expression measurements. METHODS: EphA4 knockout (KO) mice, Clock(Δ19/Δ19) mutant mice and littermates, C57BL/6J and CD-1 mice, and Sprague-Dawley rats were studied under a 12 h light: 12 h dark cycle, under undisturbed conditions or 6 h sleep deprivation (SLD), and submitted to a 48 h electrophysiological recording and/or brain sampling at different time of day. RESULTS: EphA4 KO mice showed less rapid eye movement sleep (REMS), enhanced duration of individual bouts of wakefulness and nonrapid eye movement sleep (NREMS) during the light period, and a blunted daily rhythm of NREMS sigma activity. The NREMS delta activity response to SLD was unchanged in EphA4 KO mice. However, SLD increased EphA4 expression in the thalamic/hypothalamic region in C57BL/6J mice. We further show the presence of E-boxes in the promoter region of EphA4, a lower expression of EphA4 in Clock mutant mice, a rhythmic expression of EphA4 ligands in several brain areas, expression of EphA4 in the suprachiasmatic nuclei of the hypothalamus (SCN), and finally an unchanged number of cells expressing Vip, Grp and Avp in the SCN of EphA4 KO mice. CONCLUSIONS: Our results suggest that EphA4 is involved in circadian sleep regulation.


Assuntos
Ritmo Circadiano/fisiologia , Receptor EphA4/metabolismo , Privação do Sono/fisiopatologia , Sono/fisiologia , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Escuridão , Eletrocorticografia , Fenômenos Eletrofisiológicos , Homeostase , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal , Regiões Promotoras Genéticas/genética , Ratos , Ratos Sprague-Dawley , Receptor EphA4/biossíntese , Receptor EphA4/deficiência , Receptor EphA4/genética , Sono/genética , Privação do Sono/genética , Sono REM/genética , Sono REM/fisiologia , Núcleo Supraquiasmático/metabolismo , Tálamo/metabolismo , Fatores de Tempo , Vigília/genética , Vigília/fisiologia
5.
Front Cell Neurosci ; 8: 413, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538563

RESUMO

MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na(+)]out). The mechanism underlying Na(+)-sensing involves Na(+)-flow through the NaX channel, directly regulated by the Na(+)/K(+)-ATPase α1-isoform which controls Na(+)-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na(+)]in). Here we aim to determine whether environmental changes in Na(+) could actively modulate the NaX/Na(+)/K(+)-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na(+)] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na(+)] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na(+)/K(+)-ATPase remained unaltered. This unbalance between NaX and Na(+)/K(+)-ATPase pump proportion would induce a bigger portion of Na(+)/K(+)-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na(+)/K(+)-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump.

6.
Respir Physiol Neurobiol ; 204: 3-13, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25038523

RESUMO

The control of breathing is commonly viewed as being a "brainstem affair". As the topic of this special issue of Respiratory Physiology and Neurobiology indicates, we should consider broadening this notion since the act of breathing is also tightly linked to many functions other than close regulation of arterial blood gases. Accordingly, "non-brainstem" structures can exert a powerful influence on the core elements of the respiratory control network and as it is often the case, the importance of these structures is revealed when their dysfunction leads to disease. There is a clear link between respiration and anxiety and key theories of the psychopathology of anxiety (including panic disorders; PD) focus on respiratory control and related CO2 monitoring system. With that in mind, we briefly present the respiratory manifestations of panic disorder and discuss the role of the dorso-medial/perifornical hypothalamus, the amygdalar complex, and the periaqueductal gray in respiratory control. We then present recent advances in basic research indicating how adult rodent previously subjected to neonatal stress may provide a very good model to investigate the pathophysiology of PD.


Assuntos
Encéfalo/fisiopatologia , Transtorno de Pânico/fisiopatologia , Respiração , Animais , Dióxido de Carbono/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Orexinas
7.
Stress ; 17(1): 88-96, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24090157

RESUMO

Restraint and immobilization have been extensively used to study habituation of the neuroendocrine response to a repeated stressor, but behavioral consequences of this stress regimen remain largely uncharacterized. In this study, we used sucrose preference and the elevated-plus maze to probe behavioral alterations resulting from 14 days of restraint in rats. We observed a decrease in sucrose preference in stressed animals, particularly in a subgroup of individuals, but no alteration in anxiety behaviors (as measured in the elevated-plus maze) four days following the last restraint. In these low-sucrose preference animals, we observed a downregulation of the expression of preproenkephalin mRNA in the nucleus accumbens. Furthermore, we observed a strong correlation between enkephalin expression and sucrose preference in the shell part of the nucleus accumbens, with a lower level of enkephalin expression being associated with lower sucrose preference. Interestingly, quantification of the corticosterone response revealed a delayed habituation to restraint in the low-sucrose preference population, which suggests that vulnerability to stress-induced deficits might be associated with prolonged exposure to glucocorticoids. The induction of ΔFosB is also reduced in the nucleus accumbens shell of the low-sucrose preference population and this transcription factor is expressed in enkephalin neurons. Taken together, these results suggest that a ΔFosB-mediated downregulation of enkephalin in the nucleus accumbens might underlie the susceptibility to chronic stress. Further experiments will be needed to determine causality between these two phenomena.


Assuntos
Anedonia/fisiologia , Encefalinas/biossíntese , Núcleo Accumbens/metabolismo , Precursores de Proteínas/biossíntese , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Regulação para Baixo , Preferências Alimentares , Habituação Psicofisiológica , Masculino , Aprendizagem em Labirinto/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Restrição Física , Sacarose/administração & dosagem
8.
Neuropsychopharmacology ; 39(5): 1159-68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24213354

RESUMO

The endogenous enkephalins (ENKs) are potential candidates participating in the naturally occurring variations in coping styles and determining the individual capacities for adaptation during chronic stress exposure. Here we demonstrate that there is a large variance in individual behavioral, as well as in physiological outcomes, in a population of Sprague-Dawley rats subjected to 3 weeks of chronic unpredictable stress (CUS). Separation of resilient and vulnerable subpopulations reveals specific long-term neuroadaptation in the ENKergic brain circuits. ENK mRNA expression was greatly reduced in the posterior basolateral nucleus of amygdala (BLAp) in vulnerable individuals. In contrast, ENK mRNA levels were similar in resilient and control (unstressed) individuals. Another group of rats were used for lentiviral-mediated knockdown of ENK to assess whether a decrease of ENK expression in the BLAp reproduces the behavioral disturbances found in vulnerable individuals. ENK knockdown specifically located in the BLAp was sufficient to increase anxiety in the behavioral tests, such as social interaction and elevated plus maze when compared with control individuals. These results show that specific neuroadaptation mediated by the ENKergic neurotransmission in the BLAp is a key regulator of resilience, whereas a decrease of the ENK in the BLAp is a maladaptation mechanism, which mediates the behavioral dichotomy observed between vulnerable and resilient following 3 weeks of CUS.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Encefalinas/metabolismo , Estresse Psicológico/metabolismo , Adaptação Fisiológica , Animais , Ansiedade/etiologia , Doença Crônica , Encefalinas/genética , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Vetores Genéticos , Individualidade , Lentivirus , Masculino , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Comportamento Social , Estresse Psicológico/complicações , Incerteza
9.
PLoS One ; 8(9): e75099, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040390

RESUMO

The reduction of pre-enkephalin (pENK) mRNA expression might be an early sign of striatal neuronal dysfunction in Huntington's disease (HD), due to mutated huntingtin protein. Indeed, striatopallidal (pENK-containing) neurodegeneration occurs at earlier stage of the disease, compare to the loss of striatonigral neurons. However, no data are available about the functional role of striatal pENK in HD. According to the neuroprotective properties of opioids that have been recognized recently, the objective of this study was to investigate whether striatal overexpression of pENK at early stage of HD can improve motor dysfunction, and/or reduce striatal neuronal loss in the R6/2 transgenic mouse model of HD. To achieve this goal recombinant adeno-associated-virus (rAAV2)-containing green fluorescence protein (GFP)-pENK was injected bilaterally in the striatum of R6/2 mice at 5 weeks old to overexpress opioid peptide pENK. Striatal injection of rAAV2-GFP was used as a control. Different behavioral tests were carried out before and/or after striatal injections of rAAV2. The animals were euthanized at 10 weeks old. Our results demonstrate that striatal overexpression of pENK had beneficial effects on behavioral symptoms of HD in R6/2 by: delaying the onset of decline in muscular force; reduction of clasping; improvement of fast motor activity, short-term memory and recognition; as well as normalization of anxiety-like behavior. The improvement of behavioral dysfunction in R6/2 mice having received rAAV2-GFP-pENK associated with upregulation of striatal pENK mRNA; the increased level of enkephalin peptide in the striatum, globus pallidus and substantia nigra; as well as the slight increase in the number of striatal neurons compared with other groups of R6/2. Accordingly, we suggest that at early stage of HD upregulation of striatal enkephalin might play a key role at attenuating illness symptoms.


Assuntos
Corpo Estriado/metabolismo , Encefalinas/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/tratamento farmacológico , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Globo Pálido/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteína Huntingtina , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Receptores Opioides/metabolismo , Substância Negra/metabolismo
10.
Eur J Neurosci ; 38(5): 2730-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23738856

RESUMO

In rat brain, the detection and integration of chemosensory and neural signals are achieved, inter alia, by the median preoptic nucleus (MnPO) during a disturbance of the hydromineral balance. This is allowed through the presence of the sodium (Na(+) ) sensor neurons. Interestingly, enkephalins and mu-opioid receptors (µ-ORs) are known for their role in ingestive behaviors and have previously been shown to regulate the excitability of MnPO neurons following a single Na(+) depletion. However, little is known about the role of these µ-ORs in the response enhancement following repeated Na(+) challenge. Therefore, we used whole-cell recordings in acute brain slices to determine neuronal plasticity in the electrical properties of the MnPO Na(+) sensor-specific neuronal population following multiple Na(+) depletions. Our results show that the population of Na(+) sensor neurons was represented by 80% of MnPO neurons after a single Na(+) depletion and was reduced after three Na(+) depletions. Interestingly, the subpopulation of Na(+) sensors responding to D-Ala(2) ,N-MePhe(4) ,Gly-ol-enkephalin (DAMGO), a specific µ-OR agonist, represented 11% of MnPO neurons after a single Na(+) depletion and the population doubled after three Na(+) depletions. Moreover, Na(+) sensor neurons displayed modifications in the discharge pattern distribution and shape of calcium action potentials after three Na(+) depletions but these changes did not occur in Na(+) sensors responding to DAMGO. Thus, the reinforced µ-OR functionality in Na(+) sensors might take place to control the neuronal hyperexcitability and this plasticity in opioid-sensitive and Na(+) detection MnPO networks might sustain the enhanced salt ingestion induced by repeated exposure to Na(+) depletion.


Assuntos
Área Pré-Óptica/fisiologia , Receptores Opioides mu/metabolismo , Células Receptoras Sensoriais/fisiologia , Sódio/fisiologia , Animais , Técnicas In Vitro , Masculino , Osmorregulação , Área Pré-Óptica/metabolismo , Ratos , Ratos Wistar , Células Receptoras Sensoriais/metabolismo
11.
Physiol Behav ; 122: 237-45, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23665402

RESUMO

There are important and enduring differences between individuals in the magnitude of all aspects of the stress response. Among the neuropeptide systems, the endogenous opioids enkephalin (ENK) and dynorphin (DYN), are very interesting candidates to participate in the naturally occurring variations in coping styles and to determine the individual capacity for adaptation during chronic stress exposure. Under chronic social stress exposure, we hypothesize that changes in the ENKergic vs DYNergic neuronal systems within specific nuclei of the basal forebrain contribute to naturally occurring variations in coping styles and will determine individual capacities for stress adaptation. Sprague-Dawley rats were exposed to a resident-intruder model of defeat for 7 days. The average latency to be defeated over seven consecutive days was calculated for each intruder rat. Based on this distribution, we chose an average defeat latency of 350s as a cutoff criterion to define resilient and vulnerable rats. A subpopulation assumed a subordinate posture in a relatively short latency (<350s, SL) and the other subpopulation resisted defeat resulting in longer latencies (>350s, LL) to assume this posture and were identified as being vulnerable and resilient respectively. Rats were euthanized 24h after the last stress session. ENK mRNA expression was lower in the basolateral nucleus of the amygdala in vulnerable compared to control and resilient individuals. In contrast, there was no difference between resilient and control individuals. DYN mRNA is increased only within the dorsal and medial shell of the NAc of vulnerable rats compared to control individuals. There was no difference between resilient and control individuals. DYN mRNA is increased in resilient individuals in the central area of the striatum, caudal part, compared to control individuals. DYN is also increased in medial area of the striatum, caudal part in resilient and vulnerable compared to control individuals. These results have broad implications for understanding the functional roles of opioid neurotransmission following repeated social stress and suggest that ENK could facilitate the adaptation of behavioral responses by opposition to the DYN neurotransmission that appears to promote maladaptive behavioral response to chronic social stress.


Assuntos
Tonsila do Cerebelo/metabolismo , Dinorfinas/metabolismo , Encefalinas/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Adaptação Psicológica , Animais , Dinorfinas/genética , Encefalinas/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/genética
12.
Exp Physiol ; 98(8): 1312-24, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603375

RESUMO

Neonatal stress disrupts the developmental trajectory of homeostatic systems. Adult (8- to 10-week-old) male rats exposed to maternal separation (a form of neonatal stress) display several traits reported in patients suffering from sleep-disordered breathing, including an augmented hypoxic chemoreflex. To understand the mechanisms behind this effect, we tested the hypothesis that neonatal stress augments glutamatergic neurotransmission in three regions involved in respiratory regulation, namely the nucleus of the solitary tract, the paraventricular nucleus of the hypothalamus and the phrenic motor nucleus. Maternal separation was performed for 3 h day(-1) from postnatal day 3 to 12. Control pups were undisturbed. Adult rats were instrumented for intracerebroventricular injection of the AMPA/kainate receptor antagonist CNQX (0-4.3 µm). Using plethysmography, ventilatory activity was measured at rest in awake animals during normoxia (fractional inspired O2 = 0.21) and during acute hypoxia (fractional inspired O2 = 0.12; 20 min). Following vehicle injection, the hypoxic ventilatory response of stressed rats was 35% greater than that of controls. Microinjection of CNQX attenuated the hypoxic ventilatory response, but the effect observed in stressed rats was greater than that in control animals. Autoradiography experiments showed that neonatal stress augments expression of AMPA receptors within the paraventricular nucleus of the hypothalamus and the phrenic motor nucleus. Quantification of brain-derived neurotrophic factor showed that neonatal stress augments brain-derived neurotrophic factor expression only within the paraventricular nucleus. We conclude that neonatal stress augments the hypoxic chemoreflex by increasing the efficacy of glutamatergic synaptic inputs projecting onto key respiratory structures, especially the paraventricular nucleus of the hypothalamus. These data provide new insight into the aetiology of sleep-disordered breathing.


Assuntos
Hipóxia/fisiopatologia , Receptores de AMPA/metabolismo , Reflexo/fisiologia , Síndromes da Apneia do Sono/fisiopatologia , Estresse Fisiológico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Hipóxia/metabolismo , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Nervo Frênico/metabolismo , Nervo Frênico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Respiração , Síndromes da Apneia do Sono/metabolismo , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia
13.
Eur J Neurosci ; 37(8): 1357-67, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23368426

RESUMO

The endogenous opioid enkephalins (ENK) are highly expressed in the central nucleus of the amygdaloid complex (CeA) where several lines of evidence point to a potential role in the modulation of fear and anxiety. In this study, we aimed to assess the role of CeA ENK using local injections of a lentiviral vector expressing a short hairpin RNA (shRNA) targeting ENK in Sprague-Dawley rats. We injected this vector in the CeA and a 56% downregulation of ENK mRNA was observed in animals when compared with scrambled shRNA animals. Anxiety-like behaviors were also assessed using the elevated plus maze and social interaction test. There was an increase in exploration of open arms of the elevated plus maze in ENK knockdown animals compared with controls, but no change in social interaction. In addition, we used the contextual fear conditioning procedure to assess fear expression and learning in these animals. There was a reduction in freezing induced by acute shocks during the training procedure. Interestingly, associative learning was not affected, and ENK knockdown animals displayed an equivalent freezing when re-exposed to the conditioning chamber 48 h later. These results contrast with knockout mice studies, which ascribed anxiolytic properties to ENK, and they demonstrate the need for a thorough understanding and characterization of neuroanatomically distinct ENK pathways.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Encefalinas/metabolismo , Medo/fisiologia , Animais , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Hibridização In Situ , Masculino , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
14.
J Neurosci ; 33(7): 3067-78, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407962

RESUMO

The median preoptic nucleus (MnPO) holds a strategic position in the hypothalamus. It is adjacent to the third ventricle; hence, it can directly access the ionic composition of the CSF. MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as central sensors of extracellular Na(+) concentration ([Na(+)](ext)). The mechanism underlying Na(+) sensing involves the atypical Na(+) channel, Na(X). Here we sought to determine whether Na(+) influx in Na(+) sensors is actively regulated via interaction with other membrane proteins involved in cellular Na(+) homeostasis, such as Na(+)/K(+)-ATPase. The Na(+)/K(+)-ATPase role was investigated using patch-clamp recordings in rat MnPO dissociated neurons. Na(+) current evoked with hypernatriuric solution was diminished in the absence of ATP/GTP, indicating that Na(+)/K(+)-ATPase play a central role in [Na(+)](ext) detection. Specific blockers of α1 and α3 isoforms of Na(+)/K(+)-ATPase, ouabain or strophanthidin, inhibited this Na(+) current. However, strophanthidin, which selectively blocks the α1 isoform, was more effective in blocking Na(+) current, suggesting that the Na(+)/K(+)-ATPase-α1 isoform is specifically involved in [Na(+)](ext) detection. Although strophanthidin did not alter either the membrane resistance or the Na(+) reversal potential, the conductance and the permeability of the Na(X) channel decreased significantly. Our results suggest that Na(+)/K(+)-ATPase interacts with the Na(X) channel and regulates the high [Na(+)](ext)-evoked Na(+) current via influencing the Na(+) influx rate. This study describes a novel intracellular regulatory pathway of [Na(+)](ext) detection in MnPO neurons. The α1 isoform of Na(+)/K(+)-ATPase acts as a direct regulatory partner of the Na(X) channel and influences Na(+) influx via controlling the Na(+) permeability of the channel.


Assuntos
Neurônios/metabolismo , Canais de Sódio/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/fisiologia , Algoritmos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Ouabaína/farmacologia , Técnicas de Patch-Clamp , Permeabilidade , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Estrofantidina/farmacologia
15.
Am J Physiol Regul Integr Comp Physiol ; 303(8): R834-42, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22874426

RESUMO

The essential role of the median preoptic nucleus (MnPO) in the integration of chemosensory information associated with the hydromineral state of the rat relies on the presence of a unique population of sodium (Na+) sensor neurons. Little is known about the intrinsic properties of these neurons; therefore, we used whole cell recordings in acute brain slices to determine the electrical fingerprints of this specific neural population of rat MnPO. The data collected from a large sample of neurons (115) indicated that the Na+ sensor neurons represent a majority of the MnPO neurons in situ (83%). These neurons displayed great diversity in both firing patterns induced by transient depolarizing current steps and rectifying properties activated by hyperpolarizing current steps. This diversity of electrical properties was also present in non-Na+ sensor neurons. Subpopulations of Na+ sensor neurons could be distinguished, however, from the non-Na+ sensor neurons. The firing frequency was higher in Na+ sensor neurons, showing irregular spike discharges, and the amplitude of the time-dependent rectification was weaker in the Na+ sensor neurons than in non-Na+ sensor neurons. The diversity among the electrical properties of the MnPO neurons contrasts with the relative function homogeneity (Na+ sensing). However, this diversity might be correlated with a variety of direct synaptic connections linking the MnPO to different brain areas involved in various aspects of the restoration and conservation of the body fluid homeostasis.


Assuntos
Área Pré-Óptica/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Canais de Sódio/metabolismo , Sódio/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Técnicas In Vitro , Masculino , Potenciais da Membrana , Técnicas de Patch-Clamp , Área Pré-Óptica/citologia , Ratos , Ratos Wistar , Células Receptoras Sensoriais/classificação , Fatores de Tempo
16.
Front Neuroanat ; 6: 26, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22833716

RESUMO

The Scn7a gene encodes for the specific sodium channel Na(X), which is considered a primary determinant of sodium sensing in the brain. Only partial data exist describing the Na(X) distribution pattern and the cell types that express Na(X) in both the rat and mouse brain. To generate a global view of the sodium detection mechanisms in the two rodent brains, we combined Na(X) immunofluorescence with fluorescent cell markers to map and identify the Na(X)-expressing cell populations throughout the network involved in hydromineral homeostasis. Here, we designed an anti-Na(X) antibody targeting the interdomain 2-3 region of the Na(X) channel's α-subunit. In both the rat and mouse, Na(X) immunostaining was colocalized with vimentin positive cells in the median eminence and with magnocellular neurons immunopositive for neurophysin associated with oxytocin or vasopressin in both the supraoptic and paraventricular nuclei. Na(X) immunostaining was also detected in neurons of the area postrema. In addition to this common Na(X) expression pattern, several differences in Na(X) immunostaining for certain structures and cell types were found between the rat and mouse. Na(X) was present in both NeuN and vimentin positive cells in the subfornical organ and the vascular organ of the lamina terminalis of the rat whereas Na(X) was only colocalized with vimentin positive cells in the mouse circumventricular organs. In addition, Na(X) immunostaining was specifically observed in NeuN immunopositive cells in the median preoptic nucleus of the rat. Overall, this study characterized the Na(X)-expressing cell types in the network controlling hydromineral homeostasis of the rat and mouse. Na(X) expression pattern was clearly different in the nuclei of the lamina terminalis of the rat and mouse, indicating that the mechanisms involved in systemic and central Na(+) sensing are specific to each rodent species.

17.
Behav Brain Res ; 229(1): 160-7, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22245257

RESUMO

For many patients, chronic pain is often accompanied, and sometimes amplified, by co-morbidities such as anxiety and depression. Although it represents important challenges, the establishment of appropriate preclinical behavioral models contributes to drug development for treating chronic inflammatory pain and associated psychopathologies. In this study, we investigated whether rats experiencing persistent inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA) developed anxiety-like behaviors, and whether clinically used analgesic and anxiolytic drugs were able to reverse CFA-induced anxiety-related phenotypes. These behaviors were evaluated over 28 days in both CFA- and saline-treated groups with a variety of behavioral tests. CFA-induced mechanical allodynia resulted in increased anxiety-like behaviors as evidenced by: (1) a significant decrease in percentage of time spent and number of entries in open arms of the elevated-plus maze (EPM), (2) a decrease in number of central squares visited in the open field (OF), and (3) a reduction in active social interactions in the social interaction test (SI). The number of entries in closed arms in the EPM and the distance traveled in the OF used as indicators of locomotor performance did not differ between treatments. Our results also reveal that in CFA-treated rats, acute administration of morphine (3mg/kg, s.c.) abolished tactile allodynia and anxiety-like behaviors, whereas acute administration of diazepam (1mg/kg, s.c) solely reversed anxiety-like behaviors. Therefore, pharmacological treatment of anxiety-like behaviors induced by chronic inflammatory pain can be objectively evaluated using multiple behavioral tests. Such a model could help identify/validate alternative potential targets that influence pain and cognitive dimensions of anxiety.


Assuntos
Ansiedade/etiologia , Inflamação/complicações , Dor/complicações , Dor/etiologia , Análise de Variância , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Doença Crônica , Adaptação à Escuridão/efeitos dos fármacos , Diazepam/uso terapêutico , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Adjuvante de Freund/efeitos adversos , Lateralidade Funcional , Hiperalgesia/induzido quimicamente , Hiperalgesia/diagnóstico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Relações Interpessoais , Masculino , Morfina/uso terapêutico , Atividade Motora/efeitos dos fármacos , Mycobacterium/química , Entorpecentes/uso terapêutico , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
18.
Prog Neuropsychopharmacol Biol Psychiatry ; 33(8): 1356-65, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19583989

RESUMO

Numerous neuroanatomical data indicate that the bed nucleus of the stria terminalis (BST) provides an interface between cortical and amygdaloid neurons, and effector neurons modulating motor, autonomic and neuroendocrine responses. Distinct divisions of the BST may be involved in stress response, homeostatic regulation, nociception, and motivated behaviors. Endogenous opioid peptides and receptors are expressed in the BST, but their exact distribution is poorly characterized. The present study used in situ hybridization in order to characterize the endogenous opioid system of the BST, focusing on both enkephalin and dynorphin neuropeptides, as well as their respective receptors (mu, delta, and kappa opioid receptors). We report that preprodynorphin mRNA is observed in distinct nuclei of the BST, namely the fusiform, oval and anterior lateral nuclei. In contrast, there is a widespread expression of preproenkephalin mRNA in both anterior and posterior divisions of the BST. Similarly, mu and kappa opioid receptors are broadly expressed in the BST, whereas delta opioid receptor mRNA was observed only in the principal nucleus. For further characterization of enkephalin-expressing neurons of the BST, we performed a double fluorescent in situ hybridization in order to reveal the coexpression of enkephalin peptides and markers of GABAergic and glutamatergic neurons. Although most neurons of the BST are GABAergic, there is also a modest population of glutamatergic cells expressing vesicular glutamate transporter 2 (VGLUT2) in specific nuclei of the BST. Finally, we identified a previously unreported population of enkephalinergic neurons expressing VGLUT2, which is principally located in the posterior BST.


Assuntos
Analgésicos Opioides/metabolismo , Neuroanatomia/métodos , Núcleos Septais/anatomia & histologia , Núcleos Septais/metabolismo , Animais , Encefalinas/genética , Encefalinas/metabolismo , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , RNA Mensageiro/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Eur J Neurosci ; 27(5): 1197-209, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18364037

RESUMO

The median preoptic nucleus (MnPO) is an integrator site for the chemosensory and neural signals induced by a perturbation in the hydromineral balance, and it is highly involved in controlling fluid and electrolyte ingestion. Here, we hypothesize that opioid peptides, previously recognized to control ingestive behaviors, may regulate the excitability of MnPO neurons and that this regulatory action may depend on the natriuric (Na(+)) status of body fluid compartments. Our results show that activation of mu-, but not delta-, opioid receptors (OR) triggered a membrane hyperpolarization by recruiting a G-protein-regulated inward-rectifier K(+) (GIRK) conductance in 41% of the neurons tested. Interestingly, 24 h Na(+) depletion strengthened this opioid-mediated control of neuronal excitability. In Na(+)-depleted animals, the neuronal population displaying the mu-OR-induced hyperpolarization expanded to 60% (Z-test, P = 0.012), whereas Na(+) repletion restored this population to the control level (39%; Z-test, P = 0.037). Among the neurons displaying mu-OR-induced hyperpolarization, Na(+) depletion specifically increased the neuronal population responsive to variation in ambient Na(+) (from 27% to 43%; Z-test, P = 0.029). In contrast, Na(+) repletion dramatically reduced the population that was unresponsive to Na(+) (from 17% to 3%; Z-test, P = 0.031). Neither the basic properties of the neurons nor the characteristics of the mu-OR-induced response were altered by the body Na(+) challenge. Our results indicate that an episode of Na(+) depletion/Na(+) repletion modifies the organization of the opioid-sensitive network of the MnPO. Such network plasticity might be related to the avid salt ingestion triggered by repeated Na(+) depletion.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Área Pré-Óptica/fisiologia , Receptores Opioides mu/fisiologia , Sódio na Dieta/administração & dosagem , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Furosemida/farmacologia , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sódio na Dieta/farmacologia , Sinapses/efeitos dos fármacos
20.
Eur J Neurosci ; 27(5): 1174-88, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18364036

RESUMO

Neonatal maternal separation (NMS) alters respiratory control development. Adult male rats previously subjected to NMS show a hypoxic ventilatory response 25% greater than controls. During hypoxia, gamma-aminobutyric acid (GABA) release within the nucleus tractus solitarius (NTS) modulates the magnitude of the ventilatory response. Because development of GABAergic receptors is sensitive to NMS, we tested the hypothesis that in adults, a change in responsiveness to GABA within the NTS contributes to NMS-related enhancement of the inspiratory (phrenic) response to hypoxia. Pups subjected to NMS were placed in an incubator for 3 h/day for 10 consecutive days [postnatal days 3 to 12]. Controls were undisturbed. Adult (8-10 weeks old) rats were anaesthetized (urethane; 1.6 g/kg), paralysed and artificially ventilated to record phrenic activity. Rats either received a 50-nL microinjection of GABA (5 microm) or phosphate-buffered saline (sham) within the caudal NTS, or no injection prior to being exposed to hypoxia (FiO(2) = 0.12; 5 min). NMS enhanced both the frequency and amplitude components of the phrenic response to hypoxia vs controls. GABA microinjection attenuated the phrenic responses in NMS rats only. This result is supported by ligand binding autoradiography results showing that the number of GABA(A) receptors within the NTS was 69% greater in NMS vs controls. Despite this increase, the phrenic response to hypoxia of NMS rats is larger than controls, suggesting that the higher responsiveness to GABA microinjection within the NTS is part of a mechanism that aims to compensate for: (i) a deficient GABAergic modulation; (ii) enhancement of excitatory inputs converging onto this structure; or (iii) both.


Assuntos
Hipóxia/fisiopatologia , Inalação/fisiologia , Privação Materna , Nervo Frênico/fisiologia , Núcleo Solitário/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Agonistas de Receptores de GABA-A , Inalação/efeitos dos fármacos , Masculino , Nervo Frênico/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia , Núcleo Solitário/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA