Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 49(3): 768-780, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29993968

RESUMO

The human controller (HC) in manual control of a dynamical system often follows a visible and predictable reference path (target). The HC can adopt a control strategy combining closed-loop feedback and an open-loop feedforward response. The effects of the target signal waveform shape and the system dynamics on the human feedforward dynamics are still largely unknown, even for common, stable, vehicle-like dynamics. This paper studies the feedforward dynamics through computer model simulations and compares these to system identification results from human-in-the-loop experimental data. Two target waveform shapes are considered, constant velocity ramp segments and constant acceleration parabola segments. Furthermore, three representative vehicle-like system dynamics are considered: 1) a single integrator (SI); 2) a second-order system; and 3) a double integrator. The analyses show that the HC utilizes a combined feedforward/feedback control strategy for all dynamics with the parabola target, and for the SI and second-order system with the ramp target. The feedforward model parameters are, however, very different between the two target waveform shapes, illustrating the adaptability of the HC to task variables. Moreover, strong evidence of anticipatory control behavior in the HC is found for the parabola target signal. The HC anticipates the future course of the parabola target signal given extensive practice, reflected by negative feedforward time delay estimates.

2.
IEEE Trans Cybern ; 48(1): 2-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27662694

RESUMO

Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.

3.
IEEE Trans Cybern ; 43(6): 1936-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23757583

RESUMO

In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.


Assuntos
Algoritmos , Biorretroalimentação Psicológica/fisiologia , Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...