Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6612, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857623

RESUMO

Electric control of spins has been a longstanding goal in the field of solid state physics due to the potential for increased efficiency in information processing. This efficiency can be optimized by transferring spintronics to the atomic scale. We present electric control of spin resonance transitions in single TiH molecules by employing electron spin resonance scanning tunneling microscopy (ESR-STM). We find strong bias voltage dependent shifts in the ESR signal of about ten times its line width. We attribute this to the electric field in the tunnel junction, which induces a displacement of the spin system changing the g-factor and the effective magnetic field of the tip. We demonstrate direct electric control of the spin transitions in coupled TiH dimers. Our findings open up new avenues for fast coherent control of coupled spin systems and expands on the understanding of spin electric coupling.

2.
Nat Commun ; 14(1): 6794, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880208

RESUMO

Magnetic impurities on superconductors lead to bound states within the superconducting gap, so called Yu-Shiba-Rusinov (YSR) states. They are parity protected, which enhances their lifetime, but makes it more difficult to excite them. Here, we realize the excitation of YSR states by microwaves facilitated by the tunnel coupling to another superconducting electrode in a scanning tunneling microscope (STM). We identify the excitation process through a family of anomalous microwave-assisted tunneling peaks originating from a second-order resonant Andreev process, in which the microwave excites the YSR state triggering a tunneling event transferring a total of two charges. We vary the amplitude and the frequency of the microwave to identify the energy threshold and the evolution of this excitation process. Our work sets an experimental basis and proof-of-principle for the manipulation of YSR states using microwaves with an outlook towards YSR qubits.

3.
Phys Rev Lett ; 131(8): 086701, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683177

RESUMO

Quantum magnets provide a powerful platform to explore complex quantum many-body phenomena. One example is triplon excitations, exotic many-body modes emerging from propagating singlet-triplet transitions. We engineer a minimal quantum magnet from organic molecules and demonstrate the emergence of dispersive triplon modes in one- and two-dimensional assemblies probed with scanning tunneling microscopy and spectroscopy. Our results provide the first demonstration of dispersive triplon excitations from a real-space measurement.

4.
Opt Express ; 31(15): 23714-23728, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475216

RESUMO

There has been an increasing interest in ultraviolet (UV) communications as a promising technology for non-line-of-sight (NLOS) networking by exploiting atmospheric scattering at UV wavelengths that enables a unique NLOS UV communication channel. While there has been significant theoretical and simulation-based investigation of the UV channel characteristics, there is limited work in terms of experimental research and validation of the analytical models. In this paper, we present a flexible experimental system for precise UV channel and communications measurements. Specifically, a transceiver system is developed that consists of a gimbal, UV light-emitting-diode array, and photomultiplier tube detector, node synchronization, and LabVIEW-based data acquisition subsystems. Novel techniques to precisely characterize the UV LED array radiation pattern, absolute transmit power, and field of view of the detector are also presented. The utility of the developed system is then demonstrated by performing a variety of experiments including UV channel model validation and steering optimization for UV communication links where the results were in very good agreement with theory and simulation.

5.
Opt Express ; 30(20): 36283-36296, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258560

RESUMO

The ultraviolet communication (UV) channel has been shown to have unique features that could be exploited for covert ground-to-ground communications in complex non-line-of-sight (NLOS) scenarios. A key challenge is the determination of optimal configuration of pointing directions of the UV nodes in unknown NLOS environments to maximize the link performance. In this paper, we proposed a novel steering optimization approach based on Finite Difference Stochastic Approximation (FDSA) to simultaneously optimize the transmitter (Tx) and receiver (Rx) pointing directions without any knowledge about the locations and relative orientations of the two nodes. We perform parametric analysis using Monte Carlo channel simulations to investigate and select appropriate key algorithmic parameters and analyze the performance of the proposed algorithm. We also carry out experimentation using our custom designed UV Tx and Rx gimbal systems and demonstrate the utility and efficiency of the proposed steering optimization approach and show that the received photon count can be increased significantly.

6.
Rev Sci Instrum ; 93(4): 043705, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489929

RESUMO

The continuous increase in storage densities and the desire for quantum memories and computers push the limits of magnetic characterization techniques. Ultimately, a tool that is capable of coherently manipulating and detecting individual quantum spins is needed. Scanning tunneling microscopy (STM) is the only technique that unites the prerequisites of high spatial and energy resolution, low temperature, and high magnetic fields to achieve this goal. Limitations in the available frequency range for electron spin resonance STM (ESR-STM) mean that many instruments operate in the thermal noise regime. We resolve challenges in signal delivery to extend the operational frequency range of ESR-STM by more than a factor of two and up to 100 GHz, making the Zeeman energy the dominant energy scale at achievable cryogenic temperatures of a few hundred millikelvin. We present a general method for augmenting existing instruments into ESR-STM to investigate spin dynamics in the high-field limit. We demonstrate the performance of the instrument by analyzing inelastic tunneling in a junction driven by a microwave signal and provide proof of principle measurements for ESR-STM.

7.
Opt Express ; 28(16): 23640-23651, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752357

RESUMO

Deep ultraviolet wavelengths have been proposed for low-probability-of-detection (LPD) communications, particularly for non-line-of-sight (NLOS) links, because of the increased atmospheric absorption at these wavelengths. Motivated by this favorable feature, we develop a modeling framework to quantitatively study the LPD characteristics of ultraviolet communications (UVC). We then demonstrate the application of our modeling framework by considering various friendly and adversarial system configurations and quantifying the proposed LPD metric (the range at which an adversary can detect communications that uses the minimum power needed to meet given communications performance requirements), as well as investigating the sensitivity of the analysis to various scenario parameters. The results demonstrate the potential for this modeling and analysis approach to provide key insights into the design and operation of LPD NLOS UVC systems.

8.
J Opt Soc Am A Opt Image Sci Vis ; 34(5): 770-782, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463321

RESUMO

The estimation of an inhomogeneous Poisson process (IHPP) rate function from a set of process observations is an important problem arising in optical communications and a variety of other applications. However, because of practical limitations of detector technology, one is often only able to observe a corrupted version of the original process. In this paper, we consider how inference of the rate function is affected by dead time, a period of time after the detection of an event during which a sensor is insensitive to subsequent IHPP events. We propose a flexible nonparametric Bayesian approach to infer an IHPP rate function given dead-time limited process realizations. Simulation results illustrate the effectiveness of our inference approach and suggest its ability to extend the utility of existing sensor technology by permitting more accurate inference on signals whose observations are dead-time limited. We apply our inference algorithm to experimentally collected optical communications data, demonstrating the practical utility of our approach in the context of channel modeling and validation.

9.
Opt Express ; 24(7): 6931-44, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27136988

RESUMO

We present a catadioptric beacon localization system that can provide mobile network nodes with omnidirectional situational awareness of neighboring nodes. In this system, a receiver composed of a hyperboloidal mirror and camera is used to estimate the azimuth, elevation, and range of an LED beacon. We provide a general framework for understanding the propagation of error in the angle-of-arrival estimation and then present an experimental realization of such a system. The situational awareness provided by the proposed system can enable the alignment of communication nodes in an optical wireless network, which may be particularly useful in addressing RF-denied environments.

10.
Nat Commun ; 6: 10177, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658960

RESUMO

Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, where m is an integer) should be nearly metallic with a very small bandgap. Here, we synthesize the narrowest possible GNR belonging to this family (five carbon atoms wide, N=5). We study the evolution of the electronic bandgap and orbital structure of GNR segments as a function of their length using low-temperature scanning tunnelling microscopy and density-functional theory calculations. Already GNRs with lengths of 5 nm reach almost metallic behaviour with ∼100 meV bandgap. Finally, we show that defects (kinks) in the GNRs do not strongly modify their electronic structure.

11.
Sci Rep ; 5: 16741, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26584674

RESUMO

The combination of several materials into heterostructures is a powerful method for controlling material properties. The integration of graphene (G) with hexagonal boron nitride (BN) in particular has been heralded as a way to engineer the graphene band structure and implement spin- and valleytronics in 2D materials. Despite recent efforts, fabrication methods for well-defined G-BN structures on a large scale are still lacking. We report on a new method for producing atomically well-defined G-BN structures on an unprecedented length scale by exploiting the interaction of G and BN edges with a Ni(111) surface as well as each other.

12.
Opt Express ; 23(12): 15748-61, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193553

RESUMO

By exploiting unique properties of the atmospheric propagation of radiation in the deep-ultraviolet band (200-300 nm), ultraviolet communications (UVC) offers the novel possibility of establishing non-line-of-sight (NLOS) optical links. UVC systems often employ photon-counting receivers, which may exhibit nonideal behavior owing to dead time, a period of time after the detection of a photon during which such a receiver is unable to detect subsequently impinging photons. In this paper, we extend a NLOS UVC channel model to account for dead time and then use this extended model to study the effects of dead time in representative system scenarios. Experimentally collected channel-sounding data is then used for model validation and real-world illustration of these effects. Finally, we investigate the effect of dead time on communication performance. The results demonstrate that dead time can have a significant impact in practical communication scenarios and suggest the usefulness of the proposed modeling framework in developing receiver designs that compensate for dead time effects.

13.
Nano Lett ; 14(9): 5128-32, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25078791

RESUMO

The electronic properties of graphene edges have been predicted to depend on their crystallographic orientation. The so-called zigzag (ZZ) edges haven been extensively explored theoretically and proposed for various electronic applications. However, their experimental study remains challenging due to the difficulty in realizing clean ZZ edges without disorder, reconstructions, or the presence of chemical functional groups. Here, we propose the ZZ-terminated, atomically sharp interfaces between graphene and hexagonal boron nitride (BN) as experimentally realizable, chemically stable model systems for graphene ZZ edges. Combining scanning tunneling microscopy and numerical methods, we explore the structure of graphene-BN interfaces and show them to host localized electronic states similar to those on the pristine graphene ZZ edge.

14.
Opt Express ; 22(9): 11107-18, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921809

RESUMO

We explore the design of an LED-based communication system comprising two free space optical links: one narrow-beam (primary) link for bulk data transmission and one wide-beam (beacon) link for alignment and support of the narrow-beam link. Such a system combines the high throughput of a highly directional link with the robust insensitivity to pointing errors of a wider-beam link. We develop a modeling framework for this dual-link configuration and then use this framework to explore system tradeoffs in power, range, and achievable rates. The proposed design presents a low-cost, compact, robust means of communication at short- to medium-ranges, and calculations show that data rates on the order of Mb/s are achievable at hundreds of meters with only a few LEDs.

15.
J Opt Soc Am A Opt Image Sci Vis ; 30(11): 2259-65, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24322923

RESUMO

Modeling of the complex atmospheric propagation of deep-ultraviolet (UV) radiation is important for applications such as non-line-of-sight (NLOS) UV communications. Building upon prior work in which it was observed that short-range, singly scattered NLOS path loss varies linearly with range, we formalize this relationship, generalizing it to consider any order of scattering and more-general system characteristics. In particular, we derive the approximate relationship PL[proportionality]r(2-n) between path loss PL and range r for nth-order scattered radiation, and investigate the region of validity of this approximation. Insight arising from the analysis can be invaluable in the development and study of UV systems, as demonstrated by numerical results that illustrate implications of the analysis.


Assuntos
Modelos Teóricos , Espalhamento de Radiação , Raios Ultravioleta , Reprodutibilidade dos Testes
16.
ACS Nano ; 7(12): 11121-8, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24152095

RESUMO

Using low-temperature scanning tunneling microscopy, we show that monolayer hexagonal boron nitride (h-BN) on Ir(111) acts as ultrathin insulating layer for organic molecules, while simultaneously templating their self-assembly. Tunneling spectroscopy experiments on cobalt phthalocyanine (CoPC) reveal narrow molecular resonances and indicate that the charge state of CoPC is periodically modulated by the h-BN moiré superstructure. Molecules in the second layer show site-selective adsorption behavior, allowing the synthesis of molecular dimers that are spatially ordered and inaccessible by usual chemical means.

17.
J Opt Soc Am A Opt Image Sci Vis ; 28(4): 686-95, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21478967

RESUMO

In large part because of advancements in the design and fabrication of UV LEDs, photodetectors, and filters, significant research interest has recently been focused on non-line-of-sight UV communication systems. This research in, for example, system design and performance prediction, can be greatly aided by accurate channel models that allow for the reproducibility of results, thus facilitating the fair and consistent comparison of different communication approaches. In this paper, we provide a comprehensive derivation of a multiple-scattering Monte Carlo UV channel model, addressing weaknesses in previous treatments. The resulting model can be used to study the contribution of different orders of scattering to the path loss and impulse response functions associated with general UV communication system geometries. Simulation results are provided that demonstrate the benefit of this approach.

18.
J Opt Soc Am A Opt Image Sci Vis ; 21(10): 1855-68, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15497413

RESUMO

Two methods based on factor graphs for reconstructing the three-dimensional (3D) shape of an object from a series of two-dimensional images are presented. First, a factor graph model is developed for image segmentation to obtain silhouettes from raw images; the shape-from-silhouette technique is then applied to yield the 3D reconstruction of the object. The second method presented is a direct 3D reconstruction of the object using a factor graph model for the voxels of the reconstruction. While both methods should be applicable to a variety of input data types, they will be developed and demonstrated for a particular application involving the LIDAR imaging of a submerged target. Results from simulations and from real LIDAR data are shown that detail the performance of the methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...