Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 110: 340-350, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107026

RESUMO

The radical scavenging and metal chelating properties of flavonoids indicate that they may play a protective role in diseases with perturbed metal homeostasis such as Alzheimer's disease. In this work we investigated the effect of the coordination of quercetin to copper(II) in view of the formation of ROS in Cu-catalyzed Fenton reaction. ABTS and DPPH assays confirmed that the copper(II)-quercetin complex exhibits a stronger radical scavenging activity than does quercetin alone. EPR spin trapping experiments have shown that chelation of quercetin to copper significantly suppressed the formation of hydroxyl radicals in the Cu(II)-Fenton reaction. DNA damage experiments revealed a protective effect for quercetin, but only at higher stoichiometric ratios of quercetin relative to copper. DNA protective effect of quercetin against ROS attack was described by two mechanisms. The first mechanism lies in suppressed formation of ROS due to the decreased catalytic action of copper in the Fenton reaction, as a consequence of its chelation and direct scavenging of ROS by free quercetin. Since the Cu-quercetin complex intercalates into DNA, the second mechanism was attributed to a suppressed intercalating ability of the Cu-quercetin complex due to the mildly intercalating free quercetin into DNA, thus creating a protective wall against stronger intercalators.


Assuntos
Cobre/toxicidade , Dano ao DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Quercetina/farmacologia , Cobre/química , DNA Bacteriano/química , DNA Bacteriano/genética , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Substâncias Protetoras/química , Quercetina/química
2.
J Inorg Biochem ; 161: 52-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230386

RESUMO

Alzheimer's disease is a multifactorial disease that is characterized mainly by Amyloid-ß (A-ß) deposits, cholinergic deficit and extensive metal (copper, iron)-induced oxidative stress. In this work we present details of the synthesis, antioxidant and copper-chelating properties, DNA protection study, cholinergic activity and amyloid-antiaggregation properties of new multifunctional tacrine-7-hydroxycoumarin hybrids. The mode of interaction between copper(II) and hybrids and interestingly, the reduction of Cu(II) to Cu(I) species (for complexes Cu-5e-g) were confirmed by EPR measurements. EPR spin trapping on the model Fenton reaction, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap, demonstrated a significantly suppressed formation of hydroxyl radicals for the Cu-5e complex in comparison with free copper(II). This suggests that compound 5e upon coordination to free copper ion prevents the Cu(II)-catalyzed decomposition of hydrogen peroxide, which in turn may alleviate oxidative stress-induced damage. Protective activity of hybrids 5c and 5e against DNA damage in a Fenton system (copper catalyzed) was found to be in excellent agreement with the EPR spin trapping study. Compound 5g was the most effective in the inhibition of acetylcholinesterase (hAChE, IC50=38nM) and compound 5b was the most potent inhibitor of butyrylcholinesterase (hBuChE, IC50=63nM). Compound 5c was the strongest inhibitor of A-ß1-40 aggregation, although a significant inhibition (>50%) was detected for compounds 5b, 5d, 5e and 5g. Collectively, these results suggest that the design and investigation of multifunctional agents containing along with the acetylcholinesterase inhibitory segment also an antioxidant moiety capable of alleviating metal (copper)-induced oxidative stress, may be of importance in the treatment of Alzheimer's disease.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Inibidores da Colinesterase , Cobre/química , Cumarínicos , Estresse Oxidativo , Fragmentos de Peptídeos/química , Tacrina , Doença de Alzheimer/metabolismo , Butirilcolinesterase/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cumarínicos/síntese química , Cumarínicos/química , Proteínas Ligadas por GPI/química , Humanos , Tacrina/síntese química , Tacrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...