Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 300(6): C1345-55, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21368295

RESUMO

The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Mioblastos/fisiologia , Animais , Sequência de Bases , Proteínas de Transporte/genética , Linhagem Celular , Proteínas do Citoesqueleto , Técnicas de Silenciamento de Genes , Humanos , Dados de Sequência Molecular , Mioblastos/citologia , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Alinhamento de Sequência
2.
FASEB J ; 23(8): 2616-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19332648

RESUMO

IGF activity is regulated tightly by a family of IGF binding proteins (IGFBPs). IGFBP-5 is the most conserved of these and is up-regulated significantly during differentiation of several key lineages and in some cancers. The function of IGFBP-5 in these physiological and pathological situations is unclear, however, several IGFBP-5 sequence motifs and studies in vitro suggest IGF-independent actions. Therefore, we aimed to compare the phenotypes of mice overexpressing wild-type Igfbp5 or an N-terminal mutant Igfbp5 with negligible IGF binding affinity. Both significantly inhibited growth, even at low expression levels. Even though wild-type IGFBP-5 severely disrupted the IGF axis, we found no evidence for interaction of mutant IGFBP-5 with the IGF system. Further, overexpression of wild-type IGFBP-5 rescued the lethal phenotype induced by "excess" IGF-II in type 2 receptor-null mice; mutant IGFBP-5 overexpression could not. Therefore, wild-type IGFBP-5 provides a very effective mechanism for the inhibition of IGF activity and a powerful in vivo mechanism to inhibit IGF activity in pathologies such as cancer. This study is also the first to suggest significant IGF-independent actions for IGFBP-5 during development.


Assuntos
Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Somatomedinas/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Feminino , Expressão Gênica , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/deficiência , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Mutação , Fenótipo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Distribuição Tecidual
3.
Nature ; 431(7008): 525-6, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15457249

RESUMO

The protein-kinase family is the most frequently mutated gene family found in human cancer and faulty kinase enzymes are being investigated as promising targets for the design of antitumour therapies. We have sequenced the gene encoding the transmembrane protein tyrosine kinase ERBB2 (also known as HER2 or Neu) from 120 primary lung tumours and identified 4% that have mutations within the kinase domain; in the adenocarcinoma subtype of lung cancer, 10% of cases had mutations. ERBB2 inhibitors, which have so far proved to be ineffective in treating lung cancer, should now be clinically re-evaluated in the specific subset of patients with lung cancer whose tumours carry ERBB2 mutations.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Receptor ErbB-2/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Análise Mutacional de DNA , Ativação Enzimática , Receptores ErbB/química , Receptores ErbB/genética , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/genética , Estrutura Terciária de Proteína , Quinazolinas/uso terapêutico , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...