Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202826

RESUMO

Ionically cross-linked alginate hydrogels are used in a wide range of applications, such as drug delivery, tissue engineering, and food packaging. A shortcoming of these gels is that they lose their strength and degrade at low pH values. To develop gels able to preserve their integrity in a wide range of pH values, Ca-alginate-montmorillonite nanocomposite gels are prepared, and their chemical structure, morphology, and mechanical response are analyzed. As the uniformity of nanocomposite gels is strongly affected by concentrations of MMT and CaCl2, it is revealed that homogeneous gels can be prepared with 4 wt.% MMT and 0.5 M CaCl2 at the highest. The viscoelastic behavior of nanocomposite gels in aqueous solutions with pH = 7 and pH = 2 is investigated by means of small-amplitude compressive oscillatory tests. It is shown that Ca-alginate-MMT nanocomposite gels preserve their integrity while being swollen at pH = 2. The experimental data are fitted by a model with only two material parameters, which shows that the elastic moduli increase linearly with a concentration of MMT at all pH values under investigation due to formation of physical bonds between alginate chains and MMT platelets. The presence of these bonds is confirmed by ATR-FTIR spectroscopy. The morphology of nanocomposite gels is studied by means of wide-angle X-ray diffraction, which reveals that intercalation of polymer chains between clay platelets increases the interlayer gallery spacing.

2.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514402

RESUMO

Ionically, cross-linked alginate gels have a potential to be used in a wide range of biomedical, environmental and catalytic applications. The study deals with preparation of alginate hydrogels cross-linked with various cations and the analysis of their equilibrium swelling and mechanical properties. It is shown that the type of cations used in the cross-linking process affects the elastic moduli and the equilibrium degree of swelling of the gels. The experimental data in small-amplitude oscillatory tests are fitted with a model that involves two material parameters: the elastic modulus of a polymer network and a measure of its inhomogeneity. The influence of cations on these quantities is studied numerically. It is revealed that the dependence of the elastic modulus of ionically cross-linked alginate gels on their equilibrium degree of swelling differs from that predicted by the conventional theory for covalently cross-linked gels.

3.
Gels ; 9(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37504458

RESUMO

Alginate organohydrogels prepared in water/alcohol mixtures play an important role in electronic and superconductor applications in low-temperature environments. The study deals with the preparation of Ca-alginate organohydrogels and the analysis of their equilibrium swelling and mechanical properties at sub-zero temperatures. It is shown that the equilibrium degree of swelling at room temperature is noticeably affected by the concentration of co-solvents (methanol, ethanol, and 2-propanol) in the mixtures and the number of carbon atoms in the co-solvent molecules. Mechanical properties are studied in small-amplitude oscillatory tests. The data are fitted with a model that involves three material parameters. The influence of temperature is investigated in temperature-sweep oscillatory tests under a cooling-heating program, where a noticeable difference is observed between the storage and loss moduli under cooling and heating (the hysteresis curves). The hysteresis areas are affected by the cooling/heating rate and the number of carbon atoms in the co-solvents.

4.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982139

RESUMO

A new two-step method is suggested for the preparation of homogeneous alginate gels. In the first step, alginate chains are weakly bonded by Ca2+ ions in an aqueous solution with a low pH. In the next step, the gel is immersed into a strong solution of CaCl2 to finalize the cross-linking process. Homogeneous alginate gels preserve their integrity in aqueous solutions with a pH ranging from 2 to 7 and ionic strength in the interval from 0 to 0.2 M, at temperatures ranging from room temperature up to 50 °C, and can be used in biomedical applications. The immersion of these gels into aqueous solutions with low pH induces the partial breakage of ionic bonds between chains (treated as gel degradation). This degradation affects the equilibrium and transient swelling of homogeneous alginate gels and makes them sensitive to the history of loading and environmental conditions (pH, ionic strength and temperature of aqueous solutions). As sensitivity to the environmental stimuli is a characteristic feature of polymer networks connected by catch bonds, homogeneous alginate gels may serve as a simple model, mimicking the behavior of more sophisticated structures in living matter.


Assuntos
Alginatos , Hidrogéis , Alginatos/química , Géis , Hidrogéis/química , Íons , Temperatura
5.
Materials (Basel) ; 15(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500118

RESUMO

The essential work of fracture (EWF) and Izod/Charpy impact tests have been used to investigate the fracture toughness in the plane stress of brittle polymers. In this paper, we had three goals: first, we aimed to employ how to estimate PLA toughness in different geometries; then, we proposed to compare Izod and Charpy Impact toughness in the same geometry; finally, we intended to determine the difference between EWF toughness and dynamic toughness. The results showed that the EWF method could be applied to evaluate PLA fracture behavior with small ligaments (2-4 mm), while the dynamic test could be employed with larger ligaments (5-7 mm). A comparison of the two impact test results obtained the following conclusions: Charpy impact toughness was higher than Izod impact toughness in the same geometry, and the impact toughness under a notch angle of 90° was larger than that of an angle of 45°. Both EWF and dynamic tests can be used to explore PLA toughness with small ligaments. The fracture energy decreases with ligament size in the EWF test, but it increases in the dynamic test.

6.
J Mech Behav Biomed Mater ; 130: 105179, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364364

RESUMO

The processes of growth, proliferation and differentiation of stem cells encapsulated in 3D hydrogel microenvironments are strongly affected by the viscoelastic properties of the platforms. As the viscoelastic response of a hydrogel is determined by the rates of thermally induced dissociation of reversible cross-links, its modulation by introduction of several types of supramolecular and/or dynamic covalent bonds with different characteristic lifetimes has recently become a hot topic. To reduce the number of experiments needed for design of hydrogel microenvironments with required mechanical properties, a model is developed for the viscoelastic and viscoplastic responses of hydrogels with multiple networks bridged by covalent and physical bonds. An advantage of the model is that it (i) involves a small number of material parameters, (ii) describes observations in rheological and mechanical tests in a unified manner, and (iii) predicts conventional measures of viscoelasticity used in the analysis of viability of cells.


Assuntos
Hidrogéis , Células-Tronco , Diferenciação Celular , Hidrogéis/química , Viscosidade
7.
ACS Appl Mater Interfaces ; 13(44): 53073-53082, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705408

RESUMO

We report on the investigation of thermal transport in noncured silicone composites with graphene fillers of different lateral dimensions. Graphene fillers are comprised of few-layer graphene flakes with lateral sizes in the range from 400 to 1200 nm and the number of atomic planes from 1 to ∼100. The distribution of the lateral dimensions and thicknesses of graphene fillers has been determined via atomic force microscopy statistics. It was found that in the examined range of the lateral dimensions, the thermal conductivity of the composites increases with increasing size of the graphene fillers. The observed difference in thermal properties can be related to the average gray phonon mean free path in graphene, which has been estimated to be around ∼800 nm at room temperature. The thermal contact resistance of composites with graphene fillers of 1200 nm lateral dimensions was also smaller than that of composites with graphene fillers of 400 nm lateral dimensions. The effects of the filler loading fraction and the filler size on the thermal conductivity of the composites were rationalized within the Kanari model. The obtained results are important for the optimization of graphene fillers for applications in thermal interface materials for heat removal from high-power-density electronics.

8.
Bioengineering (Basel) ; 8(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072950

RESUMO

Because of the bioactivity and biocompatibility of protein-based gels and the reversible nature of bonds between associating coiled coils, these materials demonstrate a wide spectrum of potential applications in targeted drug delivery, tissue engineering, and regenerative medicine. The kinetics of rearrangement (association and dissociation) of the physical bonds between chains has been traditionally studied in shear relaxation tests and small-amplitude oscillatory tests. A characteristic feature of recombinant protein gels is that chains in the polymer network are connected by temporary bonds between the coiled coil complexes and permanent cross-links between functional groups of amino acids. A simple model is developed for the linear viscoelastic behavior of protein-based gels. Its advantage is that, on the one hand, the model only involves five material parameters with transparent physical meaning and, on the other, it correctly reproduces experimental data in shear relaxation and oscillatory tests. The model is applied to study the effects of temperature, the concentration of proteins, and their structure on the viscoelastic response of hydrogels.

9.
J Mech Behav Biomed Mater ; 121: 104623, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098283

RESUMO

Copolymer gels prepared by polymerization of thermo-responsive and anionic monomers demonstrate strong sensitivity to several triggers such as temperature, pH and ionic strength of aqueous solutions. For biomedical applications of these materials (as on-off switches in controlled drug delivery and release), fine tuning of their volume phase transition temperature (VPTT) and a sharp decay in degree of swelling upon transition from the swollen to the collapsed state are needed. These requirements are fulfilled under swelling of copolymer gels and microgels in water under acidic conditions, but are violated when tests are conducted under alkaline conditions or in aqueous solutions of salts with physiological salinity. A model is developed for equilibrium swelling of multi-stimuli-responsive copolymer gels in aqueous solutions with arbitrary pH and molar fractions of a monovalent salt. Unlike conventional approaches, the model accounts for secondary interactions between chains (hydrogen bonding) to describe the kinetics of aggregation of hydrophobic segments above VPTT. Material constants are determined by fitting experimental swelling diagrams on poly(N-isopropylacrylamide-co-sodium acrylate) gels with various molar fractions of ionic monomers. The effects of temperature, pH and molar fraction of salt on the equilibrium degree of swelling below and above VPTT are studied numerically.


Assuntos
Polímeros , Géis , Transição de Fase , Temperatura , Temperatura de Transição
10.
Gels ; 7(2)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916014

RESUMO

Biomedical applications of thermo-responsive (TR) hydrogels require these materials to be biocompatible, non-cytotoxic, and non-immunogenic. Due to serious concerns regarding potential toxicity of poly(N-isopropylacrylamide) (PNIPAm), design of alternative homo- and copolymer gels with controllable swelling properties has recently become a hot topic. This study focuses on equilibrium swelling of five potential candidates to replace PNIPAm in biomedical and biotechnological applications: poly(N-vinylcaprolactam), poly(vinyl methyl ether), poly(N,N-dimethyl amino ethyl methacrylate), and two families of poly(2-oxazoline)s, and poly(oligo(ethylene glycol) methacrylates). To evaluate their water uptake properties and to compare them with those of substituted acrylamide gels, a unified model is developed for equilibrium swelling of TR copolymer gels with various types of swelling diagrams. Depending on the strength of hydrophobic interactions (high, intermediate, and low), the (co)polymers under consideration are split into three groups that reveal different responses at and above the volume phase transition temperature.

11.
RSC Adv ; 11(28): 16860-16880, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479676

RESUMO

Extraordinary mechanical properties of supramolecular gels (fracture toughness, fatigue resistance, injectability and self-healing ability) are strongly affected by their viscoelastic response driven by rearrangement (association and dissociation) of physical bonds. The kinetics of rearrangement is traditionally studied in small-amplitude shear oscillatory tests by analyzing the effect of the frequency of oscillations ω on the storage G' and loss G'' moduli. Conventional Maxwell-type models describe observations rather poorly when the gels reveal a pronounced flattening of the graphs G''(ω) at high frequencies. A simple model is derived in linear viscoelasticity of supramolecular gels. Its advantage is that the model reproduces experimental data correctly, on the one hand, and involves only four material constants, on the other. Based on the analysis of experimental data on gels cross-linked by coiled-coil complexes, covalent and ionic bonds, phenylboronic acid-diol complexes and metal-ligand coordination bonds, the model is applied to develop structure-property relations that describe the influence of chemical structure of supramolecular gels (concentration of polymer chains and type and molar fraction of temporary bonds) and environmental conditions (temperature, pH and ionic strength of buffer solutions) on their viscoelastic response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...