Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(644): eabj9954, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35544595

RESUMO

The transition from acute to chronic pain is critically important but not well understood. Here, we investigated the pathophysiological mechanisms underlying the transition from acute to chronic low back pain (LBP) and performed transcriptome-wide analysis in peripheral immune cells of 98 participants with acute LBP, followed for 3 months. Transcriptomic changes were compared between patients whose LBP was resolved at 3 months with those whose LBP persisted. We found thousands of dynamic transcriptional changes over 3 months in LBP participants with resolved pain but none in those with persistent pain. Transient neutrophil-driven up-regulation of inflammatory responses was protective against the transition to chronic pain. In mouse pain assays, early treatment with a steroid or nonsteroidal anti-inflammatory drug (NSAID) also led to prolonged pain despite being analgesic in the short term; such a prolongation was not observed with other analgesics. Depletion of neutrophils delayed resolution of pain in mice, whereas peripheral injection of neutrophils themselves, or S100A8/A9 proteins normally released by neutrophils, prevented the development of long-lasting pain induced by an anti-inflammatory drug. Analysis of pain trajectories of human subjects reporting acute back pain in the UK Biobank identified elevated risk of pain persistence for subjects taking NSAIDs. Thus, despite analgesic efficacy at early time points, the management of acute inflammation may be counterproductive for long-term outcomes of LBP sufferers.


Assuntos
Dor Aguda , Dor Crônica , Dor Lombar , Dor Aguda/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Camundongos , Ativação de Neutrófilo
2.
Pain ; 163(7): e821-e836, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913882

RESUMO

ABSTRACT: The pathophysiology of fibromyalgia syndrome (FMS) remains elusive, leading to a lack of objective diagnostic criteria and targeted treatment. We globally evaluated immune system changes in FMS by conducting multiparametric flow cytometry analyses of peripheral blood mononuclear cells and identified a natural killer (NK) cell decrease in patients with FMS. Circulating NK cells in FMS were exhausted yet activated, evidenced by lower surface expression of CD16, CD96, and CD226 and more CD107a and TIGIT. These NK cells were hyperresponsive, with increased CCL4 production and expression of CD107a when co-cultured with human leukocyte antigen null target cells. Genetic and transcriptomic pathway analyses identified significant enrichment of cell activation pathways in FMS driven by NK cells. Skin biopsies showed increased expression of NK activation ligand, unique long 16-binding protein, on subepidermal nerves of patients FMS and the presence of NK cells near peripheral nerves. Collectively, our results suggest that chronic activation and redistribution of circulating NK cells to the peripheral nerves contribute to the immunopathology associated with FMS.


Assuntos
Fibromialgia , Fibromialgia/metabolismo , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares , Nervos Periféricos
3.
Pain ; 161(12): 2860-2871, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32658146

RESUMO

Alterations in cellular energy metabolism have been implicated in chronic pain, suggesting a role for mitochondrial DNA. Previous studies reported associations of a limited number of mitochondrial DNA polymorphisms with specific pain conditions. In this study, we examined the full mitochondrial genomes of people with a variety of chronic pain conditions. A discovery cohort consisting of 609 participants either with or without a complex persistent pain conditions (CPPCs) was examined. Mitochondrial DNA was subjected to deep sequencing for identification of rare mutations, common variants, haplogroups, and heteroplasmy associated with 5 CPPCs: episodic migraine, irritable bowel syndrome, fibromyalgia, vulvar vestibulitis, or temporomandibular disorders. The strongest association found was the presence of the C allele at the single nucleotide polymorphism m.2352T>C (rs28358579) that significantly increased the risk for fibromyalgia (odds ratio [OR] = 4.6, P = 4.3 × 10). This relationship was even stronger in women (OR = 5.1, P = 2.8 × 10), and m.2352T>C was associated with all other CPPCs in a consistent risk-increasing fashion. This finding was replicated in another cohort (OR = 4.3, P = 2.6 × 10) of the Orofacial Pain: Prospective Evaluation and Risk Assessment study consisting of 1754 female participants. To gain insight into the cellular consequences of the associated genetic variability, we conducted an assay testing metabolic reprogramming in human cell lines with defined genotypes. The minor allele C was associated with decreased mitochondrial membrane potential under conditions where oxidative phosphorylation is required, indicating a role of oxidative phosphorylation in pathophysiology of chronic pain. Our results suggest that cellular energy metabolism, modulated by m.2352T>C, contributes to fibromyalgia and possibly other chronic pain conditions.


Assuntos
Dor Crônica , Fibromialgia , Metabolismo Energético/genética , Feminino , Fibromialgia/genética , Humanos , Mitocôndrias/genética , Estudos Prospectivos
4.
J Biol Chem ; 285(41): 31130-8, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20675370

RESUMO

A prolonged activation of the immune system is one of the main causes of hyperproliferation of lymphocytes leading to defects in immune tolerance and autoimmune diseases. Fas ligand (FasL), a member of the TNF superfamily, plays a crucial role in controlling this excessive lymphoproliferation by inducing apoptosis in T cells leading to their rapid elimination. Here, we establish that posttranscriptional regulation is part of the molecular mechanisms that modulate FasL expression, and we show that in activated T cells FasL mRNA is stable. Our sequence analysis indicates that the FasL 3'-untranslated region (UTR) contains two AU-rich elements (AREs) that are similar in sequence and structure to those present in the 3'-UTR of TNFα mRNA. Through these AREs, the FasL mRNA forms a complex with the RNA-binding protein HuR both in vitro and ex vivo. Knocking down HuR in HEK 293 cells prevented the phorbol 12-myristate 13-acetate-induced expression of a GFP reporter construct fused to the FasL 3'-UTR. Collectively, our data demonstrate that the posttranscriptional regulation of FasL mRNA by HuR represents a novel mechanism that could play a key role in the maintenance and proper functioning of the immune system.


Assuntos
Regiões 3' não Traduzidas , Antígenos de Superfície/metabolismo , Proteína Ligante Fas/biossíntese , Regulação da Expressão Gênica , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Apoptose/genética , Apoptose/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Carcinógenos/farmacologia , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Proteína Ligante Fas/genética , Proteína Ligante Fas/imunologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Linfócitos T/imunologia , Acetato de Tetradecanoilforbol/farmacologia
5.
FEBS Lett ; 581(23): 4455-62, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17761170

RESUMO

Fas ligand (FasL) binds Fas (CD95) to induce apoptosis or activate other signaling pathways. In addition, FasL transduces bidirectional or 'reverse signals'. The intracellular domain of FasL contains consensus sequences for phosphorylation and an extended proline rich region, which regulate its surface expression through undetermined mechanism(s). Here, we used a proteomics approach to identify novel FasL interacting proteins in Schwann cells to investigate signaling through and trafficking of this protein in the nervous system. We identified two novel FasL interacting proteins, sorting nexin 18 and adaptin beta, as well as two proteins previously identified as FasL interacting proteins in T cells, PACSIN2 and PACSIN3. These proteins are all associated with endocytosis and trafficking, highlighting the tight regulation of cell surface expression of FasL in the nervous system.


Assuntos
Proteína Ligante Fas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Células de Schwann/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Proteína Ligante Fas/análise , Proteína Ligante Fas/genética , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Proteoma/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células de Schwann/citologia , Espectrometria de Massas em Tandem , Transfecção , Proteínas de Transporte Vesicular/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...