Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 23(13): 135305, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21415478

RESUMO

In this article we examine the low-temperature specific heat of slow-cooled Cu(0.2)Ag(2.8)SbSeTe(2) and the thermoelectric performance of quenched samples. We find that the low-temperature specific heat is dominated by two Einstein terms of approximate energies of 2.5 and 5 meV. The specific-heat behavior is consistent with the amorphous low-temperature thermal conductivity behavior and validates the glassy nature of the structure. We performed the synthesis of quenched samples in an attempt to eliminate the presence of micro-cracks, whose existence presumably enhances electronic scattering. We find that quenching eliminates the presence of micro-cracks but does not result in an improvement of the figure of merit. Specifically, the highest ZT obtained in the quenched samples (ZT = 1.5), though very competitive, is still significantly less that the ZT obtained in the slow-cooled samples (ZT = 1.75).


Assuntos
Ligas/química , Cobre/química , Selênio/química , Prata/química , Telúrio/química , Condutividade Térmica , Temperatura Baixa , Condutividade Elétrica , Impedância Elétrica , Eletrônica/métodos , Temperatura Alta , Microscopia Eletrônica de Transmissão/métodos , Modelos Químicos , Temperatura , Vibração
2.
Phys Rev Lett ; 96(7): 076401, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16606114

RESUMO

Uranium is the only known element that features a charge-density wave (CDW) and superconductivity. We report a comparison of the specific heat of single-crystal and polycrystalline alpha-uranium. In the single crystal we find excess contributions to the heat capacity at 41 K, 38 K, and 23 K, with a Debye temperature ThetaD = 265 K. In the polycrystalline sample the heat capacity curve is thermally broadened (ThetaD = 184 K), but no excess heat capacity was observed. The excess heat capacity Cphi (taken as the difference between the single-crystal and polycrystal heat capacities) is well described in terms of collective-mode excitations above their respective pinning frequencies. This attribution is represented by a modified Debye spectrum with two cutoff frequencies, a pinning frequency V0 for the pinned CDW (due to grain boundaries in the polycrystal), and a normal Debye acoustic frequency occurring in the single crystal.

3.
Phys Rev Lett ; 97(23): 235701, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17280213

RESUMO

The gamma-->alpha isostructural transition in the Ce0.9-xLaxTh0.1 system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity or striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to 0 K with increasing La doping, and the transition changes from being first-order to continuous at a critical concentration, x(c) approximately 0.14. At the tricritical point, the coefficient of the linear T term in the specific heat gamma and the magnetic susceptibility increase rapidly near x(c) and approach large values at x=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. The Wilson ratio reaches a value above 2 for a narrow range of concentrations near x(c), where the specific heat and susceptibility vary most rapidly with the doping concentration.

4.
Phys Rev Lett ; 95(7): 075506, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16196795

RESUMO

The complete elastic tensor of U(2)Rh(3)Si(5) has been determined over the temperature range of 5-300 K, including the dramatic first-order transition to an antiferromagnetic state at 25.5 K. Sharp upward steps in the elastic moduli as the temperature is decreased through the transition reveal the first-order nature of the phase change. In the antiferromagnetic state the temperature dependence of the elastic moduli scales with the square of the ordered moment on the uranium ion, demonstrating strong spin-lattice coupling. The temperature dependence of the moduli well above the transition indicates coupling of the ultrasonic waves to the crystal electric field levels of the uranium ion where the lowest state is a singlet. The elastic constant data suggest that the first-order phase change is magnetically driven by a bootstrap mechanism involving the ground state singlet and a magnetically active crystal electric field level.

5.
Phys Rev Lett ; 93(2): 025502, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15323925

RESUMO

We measured zirconium tungstate's elastic constants C(ij). This compound shows relatively soft, nearly isotropic elastic constants with normal Poisson ratios and no approach to Born instability. ZrW2O8 shows normal ambient-temperature elastic constants C(ij), but remarkable dC(ij)/dT that show dominant low-frequency acoustic-vibration modes. From the bulk modulus, we estimated the total ambient-temperature thermodynamic Grüneisen parameter as gamma = -1.2. The dB/dT slope gives a Grüneisen parameter gamma = -7. The 300-0 K bulk-modulus increase (40%) seems unprecedented and breaks Birch's law of corresponding states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...