Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
2.
Hum Cell ; 36(6): 2259-2269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603218

RESUMO

Peritoneal mesenchymal stromal cells (pMSCs) are isolated from peritoneal dialysis (PD) effluent, and treatment with the pMSCs reduces peritoneal membrane injury in rat model of PD. This study was designed to verify the identity of the pMSCs. pMSCs were grown in plastic dishes for 4-7 passages, and their cell surface phenotype was examined by staining with a panel of 242 antibodies. The positive stain of each target protein was determined by an increase in fluorescence intensity as compared with isotype controls in flow cytometrical analysis. Here, we showed that pMSCs predominantly expressed CD9, CD26, CD29, CD42a, CD44, CD46, CD47, CD49b, CD49c, CD49e, CD54, CD55, CD57, CD59, CD63, CD71, CD73, CD81, CD90, CD98, CD147, CD151, CD200, CD201, ß2-micoglobulin, epithelial growth factor receptor, human leukocyte antigen (HLA) class 1, and, to a lesser extent, CD31, CD45RO, CD49a, CD49f, CD50, CD58, CD61, CD105, CD164, and CD166. These cells lacked expression of most hematopoietic markers such as CD11b, CD14, CD19, CD34, CD40, CD80, CD79, CD86, and HLA-DR. There was 38.55% difference in the expression of 83 surface proteins between bone marrow (BM)-derived MSCs and pMSCs, and 14.1% in the expression of 242 proteins between adipose tissue (AT)-derived MSCs and pMSCs. The BM-MSCs but not both AT-MSCs and pMSCs express cytokine receptors (IFNγR, TNFI/IIR, IL-1R, IL-4R, IL-6R, and IL-7R). In conclusion, pMSCs exhibited a typical cell surface phenotype of MSCs, which was not the same as on BM-MSCs or AT-MSCs, suggesting that the pMSCs may represent a different MSC lineage from peritoneal cavity.

3.
Nat Commun ; 14(1): 2177, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100783

RESUMO

Current treatments to prevent thrombosis, namely anticoagulants and platelets antagonists, remain complicated by the persistent risk of bleeding. Improved therapeutic strategies that diminish this risk would have a huge clinical impact. Antithrombotic agents that neutralize and inhibit polyphosphate (polyP) can be a powerful approach towards such a goal. Here, we report a design concept towards polyP inhibition, termed macromolecular polyanion inhibitors (MPI), with high binding affinity and specificity. Lead antithrombotic candidates are identified through a library screening of molecules which possess low charge density at physiological pH but which increase their charge upon binding to polyP, providing a smart way to enhance their activity and selectivity. The lead MPI candidates demonstrates antithrombotic activity in mouse models of thrombosis, does not give rise to bleeding, and is well tolerated in mice even at very high doses. The developed inhibitor is anticipated to open avenues in thrombosis prevention without bleeding risk, a challenge not addressed by current therapies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Trombose , Camundongos , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ligantes , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Hemorragia/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico
4.
Perit Dial Int ; 43(4): 324-333, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36588412

RESUMO

BACKGROUND: Small hyperbranched polyglycerol (HPG) has been recently of interest for peritoneal dialysis, but its pharmacokinetics is barely understood. This study investigated the absorption, distribution and excretion of 1 and 3 kDa HPG. METHODS: Rats (naive, 5/6 nephrectomy (5/6 Nx) or bilateral nephrectomy (BNx)) received a single dose of 3H-labelled HPG-containing solutions intraperitoneally (IP) or intravenously (IV). Radioactivity in tissues, urine and faeces was counted using a scintillation counter. Pharmacokinetic parameters were calculated using WinNonlin software. RESULTS: During 8-h dwell with IP injected therapeutic dose of HPG-based hypertonic solutions, the plasma levels of 1 kDa HPG reached the peak at 2 h, followed by a decrease to the end, whereas 3 kDa HPG increased for the duration of the 8 h. At the experimental endpoint, the distribution of both sizes of HPG in major organs was minimal, whereas most of 1 kDa HPG was excreted via urine, and of 3 kDa remained in peritoneal cavity. The elimination of both 1 and 3 kDa HPG after either IP or IV administration was significantly delayed by 5/6 Nx or BNx as compared to naive controls. Further, 24-h faecal excretion of HPG (3 kDa) was <5% of injected dose that was not different between healthy and BNx rats. CONCLUSION: Data suggest size-dependent peritoneal absorption of osmotic HPG that are not specifically absorbed by any of the organs tested. The clearance of small HPG mainly depends on kidney excretion, implying the risk of HPG accumulation in patients with end-stage kidney disease who receive maintenance dialysis with HPG.


Assuntos
Diálise Peritoneal , Ratos , Animais , Polímeros , Cavidade Peritoneal , Glicerol/farmacocinética
5.
Food Chem ; 408: 135210, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527916

RESUMO

Pericarpium Citri Reticulatae (PCR) is used in food and medical herbal formula, and its quality is determined by its age. Raman spectroscopy is a laser technology for molecular fingerprinting. The feasibility of using surface-enhanced Raman spectroscopy (SERS) to determine the PCR age was investigated. The Raman peaks were acquired using a Raman spectrometer with a 785 nm diode laser and were analyzed using principal component analysis (PCA) followed by linear discriminant analysis (PCA-LDA). There were six major peaks at 600, 730, 990, 1370, 1607, and 1742 cm-1 in the SERS spectra, and their intensity, especially the peak at 1607 cm-1, was inversely correlated with the PCR age. The different ages of PCR could be correctly classified with over 90 % accuracy by using PCA-LDA based on the SERS spectra. In conclusion, a Raman spectrometer may be used as a novel method to identify the age of PCR products.


Assuntos
Citrus , Medicamentos de Ervas Chinesas , Análise Espectral Raman , Medicamentos de Ervas Chinesas/análise , Análise Discriminante , Citrus/química
6.
Kidney Int ; 102(5): 961-963, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272752

RESUMO

Oxidative stress is a state of excessive free radicals and is commonly found with diseased kidneys. Therefore, development of antioxidant-based therapy has been of great interest to biomedical scientists for kidney disease management. One of the drawbacks of using natural antioxidants is their low bioavailability, which limits their anti-free radical efficacy. This commentary discusses novel antioxidant gold-platinum nanoparticles and their potential for prevention of kidney failure in patients who are diagnosed with chronic kidney disease.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Platina , Estresse Oxidativo , Radicais Livres , Rim/metabolismo , Ouro
7.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883890

RESUMO

Renal hypoxia and its associated oxidative stress is a common pathway for the development of kidney diseases, and using dietary antioxidants such as flavan-3-ols to prevent kidney failure has received much attention. This study investigates the molecular mechanism by which flavan-3-ols prevent hypoxia-induced cell death in renal tubular epithelial cells. Human kidney proximal tubular cells (HKC-8) were exposed to hypoxia (1% O2) in the presence of flavan-3-ols (catechin, epicatechin, procyanidin B1, and procyanidin B2). Cell death was examined using flow cytometric analysis. Gene expression was determined using a PCR array and Western blotting, and its network and functions were investigated using STRING databases. Here, we show that the cytoprotective activity of catechin was the highest among these flavan-3-ols against hypoxia-induced cell death in cultured HKC-8 cells. Exposure of HKC-8 cells to hypoxia induced oxidative stress leading to up-regulation of DUOX2, NOX4, CYBB and PTGS2 and down-regulation of TXNRD1 and HSP90AA1. Treatment with catechin or other flavan-3-ols prevented the down-regulation of TXNRD1 expression in hypoxic HKC-8 cells. Overexpression of TXNRD1 prevented hypoxia-induced cell death, and inactivation of TXNRD1 with TRi-1, a specific TXNRD1 inhibitor, reduced the catechin cytoprotection against hypoxia-induced HKC-8 cell death. In conclusion, flavan-3-ols prevent hypoxia-induced cell death in human proximal tubular epithelial cells, which might be mediated by their maintenance of TXNRD1 expression, suggesting that enhancing TXNRD1 expression or activity may become a novel therapeutic strategy to prevent hypoxia-induced kidney damage.

8.
Exp Cell Res ; 413(2): 113081, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218723

RESUMO

Clusterin (CLU) increases resistance to renal ischemia-reperfusion injury and promotes renal tissue repair. However, the mechanisms underlying of the renal protection of CLU remain unknown. Mesenchymal stromal cells (MSCs) may contribute to kidney cell turnover and injury repair. This study investigated the in vitro functions of CLU in kidney mesenchymal stromal cells (KMSCs). KMSCs were grown in plastic culture plates. Cell surface markers, apoptosis and phagocytosis were determined by flow cytometry, and CLU protein by Western blot. There were no differences in the expression of MSC markers (positive: CD133, Sca-1, CD44, CD117 and NG2, and negative: CD34, CD45, CD163, CD41, CD276, CD138, CD79a, CD146 and CD140b) and in the trilineage differentiation to chondrocytes, adipocytes and osteocytes between wild type (WT) and CLU knockout (KO) KMSCs. CLU was expressed intracellularly and secreted by WT KMSCs, and it was up-regulated by hypoxia. CLU did not prevent hypoxia-induced cell apoptosis but promoted cell growth in KMSC cultures. Furthermore, incubation with CLU-containing culture medium from WT KMSCs increased CD206 expression and phagocytic capacity of macrophages. In conclusion, our data for the first time demonstrate the function of CLU in the promotion of KMSCs proliferation, and it may be required for KMSCs-regulated macrophage M2 polarization and phagocytic activity.


Assuntos
Clusterina , Células-Tronco Mesenquimais , Animais , Proliferação de Células , Clusterina/genética , Clusterina/metabolismo , Hipóxia , Rim/metabolismo , Ativação de Macrófagos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Biomed Eng ; 5(10): 1202-1216, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34373602

RESUMO

Systemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity. Polymer-mediated shielding of the endothelial glycocalyx following organ procurement should be compatible with clinical procedures for transplant preservation and perfusion, and may reduce the damage and rejection of transplanted organs after surgery.


Assuntos
Glicocálix , Rejeição de Enxerto , Aloenxertos , Animais , Rejeição de Enxerto/prevenção & controle , Imunossupressores , Camundongos , Polímeros
11.
Stem Cell Res Ther ; 12(1): 398, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256856

RESUMO

BACKGROUND: A long-term of peritoneal dialysis (PD) using a hypertonic PD solution (PDS) leads to patient's peritoneal membrane (PM) injury, resulting in ultrafiltration failure (UFF) and PD drop-out. Our previous study shows that PD effluent-derived mesenchymal stromal cells (pMSCs) prevent the PM injury in normal rats after repeated exposure of the peritoneal cavity to a PDS. This study was designed to compare the cytoprotection between pMSCs and umbilical cord-derived MSCs (UC-MSCs) in the treatment of both PM and kidney injury in uremic rats with chronic PD. METHODS: 5/6 nephrectomized (5/6Nx) Sprague Dawley rats were intraperitoneally (IP) injected Dianeal (4.25% dextrose, 10 mL/rat/day) and were treated with pMSCs or umbilical cord (UC)-MSCs (approximately 2 × 106/rat/week, IP). Ultrafiltration was determined by IP injection of 30 mL of Dianeal (4.25% dextrose) with 1.5-h dewell time, and kidney failure by serum creatinine (SCr) and blood urea nitrogen (BUN). The structure of the PM and kidneys was assessed using histology. Gene expression was examined using quantitative reverse transcription PCR, and protein levels using flow cytometric and Western blot analyses. RESULTS: We showed a slight difference in the morphology between pMSCs and UC-MSCs in plastic dishes, and significantly higher expression levels of stemness-related genes (NANOG, OCT4, SOX2, CCNA2, RAD21, and EXO1) and MSCs surface markers (CD29, CD44, CD90 and CD105) in UC-MSCs than those in pMSCs, but no difference in the differentiation to chondrocytes, osteocytes or adipocytes. pMSC treatment was more effective than UC-MSCs in the protection of the MP and remnant kidneys in 5/6Nx rats from PDS-induced injury, which was associated with higher resistance of pMSCs than UC-MSCs to uremic toxins in culture, and more reduction of peritoneal mesothelial cell death by the secretome from pMSCs than from UC-MSCs in response to PDS exposure. The secretome from both pMSCs and UC-MSCs similarly inactivated NOS2 in activated THP1 cells. CONCLUSIONS: As compared to UC-MSCs, pMSCs may more potently prevent PDS-induced PM and remnant kidney injury in this uremic rat model of chronic PD, suggesting that autotransplantation of ex vivo-expanded pMSCs may become a promising therapy for UFF and deterioration of remnant kidney function in PD patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diálise Peritoneal , Animais , Humanos , Diálise Peritoneal/efeitos adversos , Ratos , Ratos Sprague-Dawley , Cordão Umbilical
12.
Sci Rep ; 11(1): 2463, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510308

RESUMO

Routine monitoring of kidney transplant function is required for the standard care in post-transplantation management, including frequent measurements of serum creatinine with or without kidney biopsy. However, the invasiveness of these methods with potential for clinically significant complications makes them less than ideal. The objective of this study was to develop a non-invasive tool to monitor the kidney transplant function by using Surface-Enhanced Raman Spectroscopy (SERS). Urine and blood samples were collected from kidney transplant recipients after surgery. Silver nanoparticle-based SERS spectra of the urine were measured and evaluated using partial least squires (PLS) analysis. The SERS spectra were compared with conventional chemical markers of kidney transplant function to assess its predictive ability. A total of 110 kidney transplant recipients were included in this study. PLS results showed significant correlation with urine protein (R2 = 0.4660, p < 0.01), creatinine (R2 = 0.8106, p < 0.01), and urea (R2 = 0.7808, p < 0.01). Furthermore, the prediction of the blood markers of kidney transplant function using the urine SERS spectra was indicated by R2 = 0.7628 (p < 0.01) for serum creatinine and R2 = 0.6539 (p < 0.01) for blood urea nitrogen. This preliminary study suggested that the urine SERS spectral analysis could be used as a convenient method for rapid assessment of kidney transplant function.


Assuntos
Transplante de Rim , Rim/fisiopatologia , Análise Espectral Raman , Transplantados , Urinálise , Adulto , Biomarcadores/sangue , Feminino , Humanos , Testes de Função Renal , Análise dos Mínimos Quadrados , Masculino , Vibração
13.
Immunol Cell Biol ; 99(3): 274-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32935392

RESUMO

Clusterin (CLU) is a multifunctional protein localized extracellularly and intracellularly. Although CLU-knockout (KO) mice are more susceptible to renal ischemia-reperfusion injury (IRI), the mechanisms underlying the actions of CLU in IRI are not fully understood. Macrophages are key regulators of IRI severity and tissue repair. Therefore, we investigated the role of CLU in macrophage polarization and phagocytosis. Renal IRI was induced in wild-type (WT) or CLU-KO C57BL/6 mice by clamping the renal pedicles for 30 min at 32°C. Peritoneal macrophages were activated via an intraperitoneal injection of lipopolysaccharide (LPS). Renal tissue damage was examined using histology, whereas leukocyte phenotypes were assessed using flow cytometry and immunohistochemistry. We found that monocytes/macrophages expressed the CLU protein that was upregulated by hypoxia. The percentages of macrophages (F4/80+ , CD11b+ or MAC3+ ) infiltrating the kidneys of WT mice were significantly less than those in CLU-KO mice after IRI. The M1/M2 phenotype ratio of the macrophages in WT kidneys decreased at day 7 post-IRI when the injury was repaired, whereas that in KO kidneys increased consistently as tissue injury persisted. In response to LPS stimulation, WT mice produced fewer M1 macrophages, but not M2, than the control did. Phagocytosis was stimulated by CLU expression in macrophages compared with the CLU null controls and by the exogenous CLU protein. In conclusion, CLU suppresses macrophage infiltration and proinflammatory M1 polarization during the recovery period following IRI, and enhances phagocytic activity, which may be partly responsible for tissue repair in the kidneys of WT mice after injury.


Assuntos
Clusterina , Rim , Animais , Clusterina/genética , Inflamação , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Biomed Mater Res B Appl Biomater ; 109(6): 853-863, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33098184

RESUMO

Hyperbranched polyglycerol (HPG) is a biocompatible polyether polymer that is a potential colloid component in a preservation solution for suppressing interstitial edema during cold storage of a donor organ. This study evaluated the outcomes of kidney transplants after cold perfusion and storage with a HPG-based preservation solution (HPGS) in a pig model of kidney autotransplantation. The left kidneys of farm pigs (weighing 35-45 kg) were perfused with and stored in either cold HPGS or standard UW solution (UWS), followed by transplantation to the right side after right nephrectomy. The survival and function of transplants were determined by the urine output, and serum creatinine (SCr) and blood urea nitrogen (BUN) of recipients. Transplant injury was examined by histological analysis. Here, we showed that there was no significant difference between HPGS and UWS in the prevention of tissue edema, but HPGS was more effective than UWS for initial blood washout of kidney perfusion and for the prevention of cold ischemia injury during cold storage. After autotransplantation, the kidneys preserved with HPGS (HPG group) had better functional recovery than those with UWS (UW group), indicated by significantly more urine output and lower levels of SCr and BUN. The survived grafts in HPG group had less tissue damage than those in UW group. In conclusion, as compared to the UWS the HPGS has less negative impact on kidney cold ischemia during cold storage, resulting in improving immediate functional recovery after transplantation, suggesting that HPG is a promising colloid for donor kidney preservation.


Assuntos
Glicerol/farmacologia , Transplante de Rim , Rim , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos , Perfusão , Polímeros/farmacologia , Adenosina/farmacologia , Alopurinol/farmacologia , Animais , Glutationa/farmacologia , Insulina/farmacologia , Rim/metabolismo , Rim/fisiopatologia , Masculino , Rafinose/farmacologia , Suínos , Transplante Autólogo
15.
Appl Spectrosc ; 75(4): 412-421, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33031004

RESUMO

Chronic kidney disease (CKD) affects more than 10% of the global population and is associated with significant morbidity and mortality. In most cases, this disease is developed silently, and it can progress to the end-stage renal failure. Therefore, early detection becomes critical for initiating effective interventions. Routine diagnosis of CKD requires both blood test and urinalyses in a clinical laboratory, which are time-consuming and have low sensitivity and specificity. Surface-enhanced Raman scattering (SERS) is an emerging method for rapidly assessing kidney function or injury. This study was designed to compare the differences between the SERS properties of the serum and urine for easy and simple detection of CKD. Enrolled for this study were 126 CKD patients (Stages 2-5) and 97 healthy individuals. SERS spectra of both the serum and urine samples were acquired using a Raman spectrometer (785 nm excitation). The correlation of chemical parameters of kidney function with the spectra was examined using prinicpal component analysis (PCA) combined with linear discriminant analysis (LDA) and partial least squares (PLS) analysis. Here, we showed that CKD was discriminated from non-CKD controls using PCA-LDA with a sensitivity of 74.6% and a specificity of 93.8% for the serum spectra, and 78.0% and 86.0 % for the urine spectra. The integration area under the receiver operating characteristic curve was 0.937 ± 0.015 (p < 0.0001) for the serum and 0.886 ± 0.025 (p < 0.0001) for the urine. The different stages of CKD were separated with the accuracy of 78.0% and 75.4% by the serum and urine spectra, respectively. PLS prediction (R2) of the serum spectra was 0.8540 for the serum urea (p < 0.001), 0.8536 for the serum creatinine (p < 0.001), 0.7500 for the estimated glomerular filtration rate (eGFR) (p < 0.001), whereas the prediction (R2) of urine spectra was 0.7335 for the urine urea (p < 0.001), 0.7901 for the urine creatinine (p < 0.001), 0.4644 for the eGFR (p < 0.001) and 0.6579 for the urine microalbumin (p < 0.001). In conclusion, the accuracy of associations between SERS findings of the serum and urine samples with clinical conclusions of CKD diagnosis in this limited number of patients is similar, suggesting that SERS may be used as a rapid and easy-to-use method for early screening of CKD, which however needs further evaluation in a large cohort study.


Assuntos
Insuficiência Renal Crônica , Análise Espectral Raman , Estudos de Coortes , Análise Discriminante , Humanos , Análise de Componente Principal , Insuficiência Renal Crônica/diagnóstico
16.
J Inflamm Res ; 13: 969-983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262633

RESUMO

BACKGROUND: Membranous nephropathy (MN) is a specific entity of glomerulonephritis, and its glomerular inflammation is characterized by the deposition of immune complexes in the glomerular basement membrane and proteinuria. However, the molecular mechanisms underlying the glomerular inflammation of MN are not fully understood. This study was designed to investigate the role of clusterin (CLU) in the development of MN using a mouse model of cationic bovine serum albumin (cBSA)-induced MN. METHODS: Both wild-type C57BL/6j (WT) and CLU-knockout C57BL/6j (CLU-KO) mice were immunized with cBSA. The kidney function was determined by the levels of serum creatinine (SCr), blood urea nitrogen (BUN) and urinary protein. MN and glomerular deposits of CLU, complement C3 and immunoglobulins (Igs) were determined by histological analyses. Serum proteins were analyzed by the enzyme-linked immunosorbent assay, Western blot and liquid chromatography-mass spectrometry. RESULTS: Here, we showed that after cBSA immunization, SCr and proteinuria were increased in CLU-KO mice but not in WT mice. Similarly, severe glomerular atrophy and mesangial expansion along with C3 deposit were only found in the kidneys of CLU-KO mice but not in WT mice. However, there were no differences of serum IgG and complement 3 levels between CLU-KO and WT mice. In the serum of WT mice, CLU bound to anti-cBSA IgG, complements (eg, C8), proteinase/protease inhibitors and antioxidative proteins to form a complex, and incubation with WT serum reduced the complement-dependent lysis of podocytes in cultures. CONCLUSION: Our data suggest that a CLU deficiency induces cBSA-initiated glomerular inflammation of MN in a disease-resistant strain of mice, suggesting an anti-glomerular inflammatory function of CLU in the resistance to MN development. This function may be at least in part due to the formation of CLU-anti-cBSA Igs complex that prevents glomerular inflammation or injury in the disease-resistant mice.

17.
Crit Rev Food Sci Nutr ; 60(18): 3054-3062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31631679

RESUMO

Chronic kidney disease (CKD) is a global health challenge due to its high prevalence, and it increases the risk of development of end-stage renal disease. Although the pathophysiology of CKD is complicated and has not been fully understood, the elevated oxidative stress is considered to play a central role in the development of this disease, thus it becomes an attractive target for CKD prevention or management. The grape extract is one of the rich sources of antioxidants. Literature demonstrates that the consumption of grape antioxidants has significant benefits to the reduction of oxidative stress in different health conditions. In this article, we reviewed the role of the oxidative stress in CKD pathophysiology, and both the preclinical and clinical findings of anti-oxidative activity of proanthocyanidins in grape extracts (catechin, epicatechin, procyanidin B1 and procyanidin), particularly in subjects with CKD. It has been shown that grape-based antioxidants have beneficial effects on chronic metabolic diseases such as diabetes and hypertension, and may also prevent the development of CKD and cardiovascular disease.


Assuntos
Biflavonoides , Catequina , Proantocianidinas , Insuficiência Renal Crônica , Vitis , Antioxidantes , Suplementos Nutricionais , Humanos , Estresse Oxidativo , Insuficiência Renal Crônica/prevenção & controle
18.
Stem Cells Int ; 2019: 8793640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636678

RESUMO

Peritoneal dialysis (PD) is a renal replacement option for patients with end-stage renal disease. However, a long-term exposure to hypertonic PD solutions leads to peritoneal membrane (PM) injury, resulting in ultrafiltration (UF) failure. This study was designed to primarily evaluate efficacy of PD effluent-derived mesenchymal stromal cells (pMSCs) in the prevention of PM injury in rats. The pMSCs were isolated from PD effluent. Male Wistar rats received daily intraperitoneal (IP) injection of 10 mL of Dianeal (4.25% dextrose) and were treated with pMSCs (1.2-1.5 × 106/rat/wk, IP). UF was determined by IP injection of 30 mL of Dianeal (4.25% dextrose) with dwell time of 1.5 h, and PM injury was examined by histology. Apoptosis was quantitated by using flow cytometric analysis, and gene expression by using the PCR array and Western blot. Here, we showed that as compared to naive control, daily IP injection of the Dianeal PD solution for 6 weeks without pMSC treatment significantly reduced UF, which was associated with an increase in both PM thickness and blood vessel, while pMSC treatment prevented the UF loss and reduced PM injury and blood vessels. In vitro incubation with pMSC-conditioned medium prevented cell death in cultured human peritoneal mesothelial cells (HPMCs) and downregulated proinflammatory (i.e., CXCL6, NOS2, IL1RN, CCL5, and NR3C1) while upregulated anti-inflammatory (i.e., CCR1, CCR4, IL9, and IL-10) gene expression in activated THP1 cells. In conclusion, pMSCs prevent bioincompatible PD solution-induced PM injury and UF decline, suggesting that infusing back ex vivo-expanded pMSCs intraperitoneally may have therapeutic potential for reduction of UF failure in PD patients.

19.
Stem Cell Res Ther ; 10(1): 204, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286993

RESUMO

Endometrial regenerative cells (ERCs) are a new type of mesenchymal-like stromal cells, and their therapeutic potential has been tested in a variety of disease models. SDF-1/CXCR4 axis plays a chemotaxis role in stem/stromal cell migration. The aim of the present study was to investigate the role of SDF-1/CXCR4 axis in the immunomodulation of ERCs on the experimental colitis. The immunomodulation of ERCs in the presence or absence of pretreatment of SDF-1 or AMD3100 was examined in both in vitro cell culture system and dextran sulphate sodium-induced colitis in mice. The results showed that SDF-1 increased the expression of CXCR4 on the surface of ERCs. As compared with normal ERCs, the SDF-1-treated, CXCR4 high-expressing ERCs more significantly suppressed dendritic cell population as well as stimulated both type 2 macrophages and regulatory T cells in vitro and in vivo. Meanwhile, SDF-1-pretreated ERCs increased the generation of anti-inflammatory factors (e.g., IL-4, IL-10) and decreased the pro-inflammatory factors (e.g., IL-6, TNF-α). In addition, SDF-1-pretreated CM-Dil-labeled ERCs were found to engraft to injured colon. Our results may suggest that an SDF-1-induced high level of CXCR4 expression enhances the immunomodulation of ERCs in alleviating experimental colitis in mice.


Assuntos
Quimiocina CXCL12/farmacologia , Colite/metabolismo , Endométrio/citologia , Compostos Heterocíclicos/farmacologia , Receptores CXCR4/metabolismo , Animais , Benzilaminas , Células Cultivadas , Quimiocina CXCL12/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ciclamos , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Compostos Heterocíclicos/uso terapêutico , Humanos , Masculino , Camundongos Endogâmicos BALB C , Baço/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
20.
BMC Nephrol ; 20(1): 181, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113397

RESUMO

BACKGROUND: Glucose is a primary osmotic agent in peritoneal dialysis (PD) solutions, but its long-term use causes structural alteration of the peritoneal membrane (PM). Hyperbranched polyglycerol (HPG) is a promising alternative to glucose. This study was designed to compare the cellular responses of human peritoneal mesothelial cells (HPMCs) to these two different osmotic agents in a hypertonic solution using transcriptome analysis. METHODS: Cultured HPMCs were repeatedly exposed to HPG-based or Physioneal 40 (PYS, glucose 2.27%) hypertonic solutions. Transcriptome datasets were produced using Agilent SurePrint G3 Human GE 8 × 60 microarray. Cellular signaling pathways were examined by Ingenuity Pathway Analysis (IPA). Protein expression was examined by flow cytometry analysis and Western blotting. RESULTS: The HPG-containing solution was better tolerated compared with PYS, with less cell death and disruption of cell transcriptome. The levels of cell death in HPG- or PYS- exposed cells were positively correlated with the number of affected transcripts (HPG: 128 at day 3, 0 at day 7; PYS: 1799 at day 3, 212 at day 7). In addition to more affected "biosynthesis" and "cellular stress and death" pathways by PYS, both HPG and PYS commonly affected "sulfate biosynthesis", "unfolded protein response", "apoptosis signaling" and "NRF2-mediated oxidative stress response" pathways at day 3. PYS significantly up-regulated HLA-DMB and MMP12 in a time-dependent manner, and stimulated T cell adhesion to HPMCs. CONCLUSION: The lower cytotoxicity of hypertonic HPG solution is in agreement with its transient and minimal impact on the pathways for the "biosynthesis of cell constituents" and the "cellular stress and death". The significant up-regulation of HLA-DMB and MMP12 by PYS may be part of its initiation of immune response in the PM.


Assuntos
Soluções para Diálise/administração & dosagem , Perfilação da Expressão Gênica/métodos , Cavidade Peritoneal/citologia , Diálise Peritoneal/tendências , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Diuréticos Osmóticos/administração & dosagem , Humanos , Células Jurkat , Compostos Orgânicos/administração & dosagem , Diálise Peritoneal/métodos , Ácidos Polimetacrílicos/administração & dosagem , Transdução de Sinais/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...