Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microsc Microanal ; 29(Supplement_1): 348-349, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613505
4.
Nat Commun ; 14(1): 1940, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024455

RESUMO

Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3 (LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3 (LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity.

5.
Sci Total Environ ; 767: 144788, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636767

RESUMO

The photolysis of NO2 is an important driving force of tropospheric ozone. The intensity of this photolysis reaction affects atmospheric oxidation and photochemical pollution process. Photolysis rate of nitrogen dioxide (JNO2) is affected by aerosols, temperature, solar zenith angle (SZA), clouds, and so on. Among them, aerosol is an important influencing factor because of its complicated and irregular change; aerosol quantitative effect on JNO2 is constructive for the coordinated control of O3 and particulate matter. In order to quantitatively assess the impact of aerosols on JNO2 in the long-term, the reconstructed JNO2 data in a suburban site in North China from 2005 to 2019 are used. We found that JNO2 and aerosol optical depth (AOD) presented logarithmic relations under different solar zenith angle (SZA) levels, the aerosol attenuation effect on JNO2 decreased as AOD increased. Two main influencing factors of JNO2, SZA, and AOD, were fitted into a quadratic polynomial to quantify the AOD effect on JNO2. The results showed that the average annual AOD effect on JNO2 in Xianghe from 2005 to 2019 was -28.6% compared to an aerosol free atmosphere; the seasonal mean AOD effect in spring, summer, autumn, and winter was -27.1% and -35.1%, -25.5% and -26.3%, respectively. During the study period, JNO2 increased with an average of 5 × 10-5 s-1 per year, while the annual average aerosol optical depth (AOD) was 0.80 ± 0.10, showing an overall downward trend. Annual mean AOD attenuation effect on JNO2 decreased over time; the decreases were larger in spring and summer, and smaller in autumn and winter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...