Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(4-2): 045205, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198834

RESUMO

The propagation of a dissipative soliton was experimentally studied in a two-dimensional binary complex plasma. The crystallization was suppressed in the center of the particle suspension where two types of particles were mixed. The motions of individual particles were recorded using video microscopy, and the macroscopic properties of the solitons were measured in the amorphous binary mixture in the center and in the plasma crystal in the periphery. Although the overall shape and parameters of solitons propagating in amorphous and crystalline regions were quite similar, their velocity structures at small scales as well as the velocity distributions were profoundly distinct. Moreover, the local structure rearranged drastically in and behind the soliton, which was not observed in the plasma crystal. Langevin dynamics simulations were performed, and the results agreed with the experimental observations.

2.
Phys Rev E ; 104(2-2): 025206, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525546

RESUMO

Theoretical results are given in the present paper, which can well explain the experimental observations performed under microgravity conditions in the PK-3 Plus Laboratory on board the International Space Station about the propagation of a solitary wave across an interface in a binary complex plasma. By using the traditional reductive perturbation method and the continuity conditions of both the electric potential and the momentum at the interface, we obtain the equivalent "initial conditions" for both the transmitted wave and the reflected waves from the incident wave. Then we obtain the numbers of the reflected and the transmitted solitary waves as well as all the wave amplitudes by using the inverse scattering method. The ripples of both reflection and transmission have also been given by using the Fourier series. The number of the reflected and the transmitted solitary waves produced by interface, as well as all the solitary wave amplitudes, depend on the system parameters such as the number density, electric charge, mass of the dust particles, and the effective temperature in both regions. The analytical results agree with observations in the experiments.

3.
Phys Rev E ; 103(1-1): 013205, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601562

RESUMO

The penetration of a supersonic particle at the interface is studied in a binary complex plasma. Inspired by the experiments performed in the PK-3 Plus Laboratory on board the International Space Station, Langevin dynamics simulations were carried out. A Mach cone structure forms in the lateral wave behind the supersonic extra particle, where the kink of the cone flanks is observed at the interface. The propagation of the pulse-like perturbation along the interface is demonstrated by the evolution of the radial and axial velocity of the small particles in the vicinity of the interface. The decay of the pulse strength is determined by the friction, where the propagation distance can reach several interparticle distances for small damping rate. The dependence of the dynamics of the background particles in the vicinity of the interface on the penetration direction implies that the disparity of the mobility may be the cause of various interfacial effects.

4.
Phys Rev Lett ; 123(18): 185002, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763898

RESUMO

Slow dynamics in an amorphous quasi-two-dimensional complex plasma, comprised of microparticles of two different sizes, was studied experimentally. The motion of individual particles was observed using video microscopy, and the self-part of the intermediate scattering function as well as the mean-squared particle displacement was calculated. The long-time structural relaxation reveals the characteristic behavior near the glass transition. Our results suggest that binary complex plasmas can be an excellent model system to study slow dynamics in classical supercooled fluids.

5.
J Imaging ; 5(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-34460464

RESUMO

A binary complex plasma consists of two different types of dust particles in an ionized gas. Due to the spinodal decomposition and force imbalance, particles of different masses and diameters are typically phase separated, resulting in an interface. Both external excitation and internal instability may cause the interface to move with time. Support vector machine (SVM) is a supervised machine learning method that can be very effective for multi-class classification. We applied an SVM classification method based on image brightness to locate the interface in a binary complex plasma. Taking the scaled mean and variance as features, three areas, namely small particles, big particles and plasma without dust particles, were distinguished, leading to the identification of the interface between small and big particles.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25353413

RESUMO

Implications of the recently discovered effect of channeling of upstream extra particles for transport phenomena in a two-dimensional plasma crystal are discussed. Upstream particles levitated above the lattice layer and tended to move between the rows of lattice particles. An example of heat transport is considered, where upstream particles act as moving heat sources, which may lead to anomalous heat transport. The average channeling length observed was 15-20 interparticle distances. Other features of the channeling process are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...