Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 12(1): 5254, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489436

RESUMO

Pdr5, a member of the extensive ABC transporter superfamily, is representative of a clinically relevant subgroup involved in pleiotropic drug resistance. Pdr5 and its homologues drive drug efflux through uncoupled hydrolysis of nucleotides, enabling organisms such as baker's yeast and pathogenic fungi to survive in the presence of chemically diverse antifungal agents. Here, we present the molecular structure of Pdr5 solved with single particle cryo-EM, revealing details of an ATP-driven conformational cycle, which mechanically drives drug translocation through an amphipathic channel, and a clamping switch within a conserved linker loop that acts as a nucleotide sensor. One half of the transporter remains nearly invariant throughout the cycle, while its partner undergoes changes that are transmitted across inter-domain interfaces to support a peristaltic motion of the pumped molecule. The efflux model proposed here rationalises the pleiotropic impact of Pdr5 and opens new avenues for the development of effective antifungal compounds.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Detergentes/química , Farmacorresistência Fúngica/genética , Pleiotropia Genética , Hidrólise , Mutação , Conformação Proteica , Domínios Proteicos , Rodaminas/química , Rodaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vanadatos/química , Vanadatos/metabolismo
2.
Structure ; 28(6): 625-634.e6, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348749

RESUMO

The small protein AcrZ in Escherichia coli interacts with the transmembrane portion of the multidrug efflux pump AcrB and increases resistance of the bacterium to a subset of the antibiotic substrates of that transporter. It is not clear how the physical association of the two proteins selectively changes activity of the pump for defined substrates. Here, we report cryo-EM structures of AcrB and the AcrBZ complex in lipid environments, and comparisons suggest that conformational changes occur in the drug-binding pocket as a result of AcrZ binding. Simulations indicate that cardiolipin preferentially interacts with the AcrBZ complex, due to increased contact surface, and we observe that chloramphenicol sensitivity of bacteria lacking AcrZ is exacerbated when combined with cardiolipin deficiency. Taken together, the data suggest that AcrZ and lipid cooperate to allosterically modulate AcrB activity. This mode of regulation by a small protein and lipid may occur for other membrane proteins.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Regulação Alostérica , Sítios de Ligação , Proteínas de Transporte/genética , Cloranfenicol/farmacologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
3.
Nat Commun ; 10(1): 2635, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201302

RESUMO

Multidrug efflux pumps actively expel a wide range of toxic substrates from the cell and play a major role in intrinsic and acquired drug resistance. In Gram-negative bacteria, these pumps form tripartite assemblies that span the cell envelope. However, the in situ structure and assembly mechanism of multidrug efflux pumps remain unknown. Here we report the in situ structure of the Escherichia coli AcrAB-TolC multidrug efflux pump obtained by electron cryo-tomography and subtomogram averaging. The fully assembled efflux pump is observed in a closed state under conditions of antibiotic challenge and in an open state in the presence of AcrB inhibitor. We also observe intermediate AcrAB complexes without TolC and discover that AcrA contacts the peptidoglycan layer of the periplasm. Our data point to a sequential assembly process in living bacteria, beginning with formation of the AcrAB subcomplex and suggest domains to target with efflux pump inhibitors.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antibacterianos/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica/métodos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Tomografia com Microscopia Eletrônica/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/ultraestrutura , Microscopia Intravital/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Peptidoglicano/metabolismo , Periplasma/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos
4.
Nat Rev Microbiol ; 16(9): 577, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022105

RESUMO

In the version of this Review originally published, the author contributions of co-author Arthur Neuberger were incorrectly listed. The author contributions should have appeared as 'D.D., X.W.-K., A.N., H.W.v.V., K.M.P., L.J.V.P. and B.F.L. researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission'. This has now been corrected in all versions of the Review. The authors apologize to readers for this error.

5.
Nat Rev Microbiol ; 16(9): 523-539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002505

RESUMO

Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
6.
Res Microbiol ; 169(7-8): 401-413, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787834

RESUMO

Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.


Assuntos
Proteínas de Bactérias/química , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Conformação Proteica
7.
Methods Mol Biol ; 1700: 71-81, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177826

RESUMO

The cell envelope of Gram-negative bacteria comprises an outer membrane, a cytoplasmic inner membrane, and an interstitial space. The tripartite multidrug transporter AcrAB-TolC, which uses proton electrochemical gradients to vectorially drive the efflux of drugs from the cell, spans this envelope. We describe here details of the methods used to prepare the recombinant tripartite assembly for high-resolution structure determination by cryo-EM.


Assuntos
Proteínas de Transporte/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutação , Conformação Proteica
8.
Nucleic Acids Res ; 46(1): 387-402, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29136196

RESUMO

The RNA degradosome is a multi-enzyme assembly that plays a central role in the RNA metabolism of Escherichia coli and numerous other bacterial species including pathogens. At the core of the assembly is the endoribonuclease RNase E, one of the largest E. coli proteins and also one that bears the greatest region predicted to be natively unstructured. This extensive unstructured region, situated in the C-terminal half of RNase E, is punctuated with conserved short linear motifs that recruit partner proteins, direct RNA interactions, and enable association with the cytoplasmic membrane. We have structurally characterized a subassembly of the degradosome-comprising a 248-residue segment of the natively unstructured part of RNase E, the DEAD-box helicase RhlB and the glycolytic enzyme enolase, and provide evidence that it serves as a flexible recognition centre that can co-recruit small regulatory RNA and the RNA chaperone Hfq. Our results support a model in which the degradosome captures substrates and regulatory RNAs through the recognition centre, facilitates pairing to cognate transcripts and presents the target to the ribonuclease active sites of the greater assembly for cooperative degradation or processing.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , RNA Bacteriano/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Endorribonucleases/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Modelos Moleculares , Complexos Multienzimáticos/genética , Conformação de Ácido Nucleico , Polirribonucleotídeo Nucleotidiltransferase/genética , Ligação Proteica , Domínios Proteicos , RNA Helicases/genética , RNA Bacteriano/química , RNA Bacteriano/genética
9.
Nat Microbiol ; 2: 17070, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504659

RESUMO

The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/química , Proteínas da Membrana Bacteriana Externa/química , Microscopia Crioeletrônica , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
10.
Elife ; 62017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28355133

RESUMO

Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump.


Assuntos
Antibacterianos/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Alostérica , Microscopia Crioeletrônica , Escherichia coli/química , Conformação Proteica
11.
Curr Opin Struct Biol ; 33: 76-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26282926

RESUMO

Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.


Assuntos
Proteínas de Bactérias/fisiologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Membrana Celular , Parede Celular , Bactérias Gram-Negativas/genética , Proteínas de Membrana Transportadoras/genética , Conformação Proteica
12.
Biol Chem ; 396(9-10): 1073-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25803077

RESUMO

Microorganisms encode several classes of transmembrane molecular pumps that can expel a wide range of chemically distinct toxic substances. These machines contribute to the capacity of the organisms to withstand harsh environments, and they help to confer resistance against clinical antimicrobial agents. In Gram-negative bacteria, some of the pumps comprise tripartite assemblies that actively transport drugs and other harmful compounds across the cell envelope. We describe recent structural and functional data that have provided insights into the architecture and transport mechanism of the AcrA-AcrB-TolC pump of Escherichia coli. This multidrug efflux pump is powered by proton electrochemical gradients through the activity of AcrB, a member of the resistance/nodulation/cell division (RND) transporter family. Crystallographic data reveal how the small protein AcrZ binds to AcrB in a concave surface of the transmembrane domain, and we discuss how this interaction may affect the efflux activities of the transporter.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
13.
Trends Microbiol ; 23(5): 311-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728476

RESUMO

Microorganisms encode several classes of transmembrane pumps that can expel an enormous range of toxic substances, thereby improving their fitness in harsh environments and contributing to resistance against antimicrobial agents. In Gram-negative bacteria these pumps can take the form of tripartite assemblies that actively efflux drugs and other harmful compounds across the cell envelope. We describe recent structural and functional data that have provided insights into the transport mechanisms of these intricate molecular machines.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica
14.
Nature ; 509(7501): 512-5, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24747401

RESUMO

The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB-TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Lipoproteínas/química , Proteínas de Membrana Transportadoras/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Farmacorresistência Bacteriana , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
15.
Open Biol ; 4: 130232, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24598263

RESUMO

The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies guided by the crystallographic results. PEP is bound to the catalytic pocket of TPI and occludes substrate, which accounts for the observation that PEP competitively inhibits the interconversion of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Replacing an isoleucine residue located in the catalytic pocket of TPI with valine or threonine altered binding of substrates and PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated activation of the pentose phosphate pathway (PPP), transgenic yeast cells expressing these TPI mutations accumulate greater levels of PPP intermediates and have altered stress resistance, mimicking the activation of the PK-TPI feedback loop. These results support a model in which glycolytic regulation requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP, mediating a protective metabolic self-reconfiguration of central metabolism under conditions of oxidative stress.


Assuntos
Glicólise , Fosfoenolpiruvato/metabolismo , Triose-Fosfato Isomerase/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Gliceraldeído 3-Fosfato/química , Gliceraldeído 3-Fosfato/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Fosfoenolpiruvato/química , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato , Triose-Fosfato Isomerase/antagonistas & inibidores , Triose-Fosfato Isomerase/genética
16.
Nucleic Acids Res ; 40(20): 10417-31, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22923520

RESUMO

The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E. The principal interactions are mapped to two, independent, RNA-binding domains from RNase E. RhlB, the RNA helicase component of the degradosome, also contributes to ribosome binding, and this is favoured through an activating interaction with RNase E. The catalytic activity of RNase E for processing 9S RNA (the ribosomal 5S RNA precursor) is repressed in the presence of the ribosome, whereas there is little affect on the cleavage of single-stranded substrates mediated by non-coding RNA, suggestings that the enzyme retains capacity to cleave unstructured substrates when associated with the ribosome. We propose that polysomes may act as antennae that enhance the rates of capture of the limited number of degradosomes, so that they become recruited to sites of active translation to act on mRNAs as they become exposed or tagged for degradation.


Assuntos
Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribossomos/metabolismo , RNA Helicases/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Reagentes de Ligações Cruzadas , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/química , Endorribonucleases/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Pequeno RNA não Traduzido/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
17.
J Biol Chem ; 286(16): 14315-23, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21324911

RESUMO

RNA turnover is an essential element of cellular homeostasis and response to environmental change. Whether the ribonucleases that mediate RNA turnover can respond to cellular metabolic status is an unresolved question. Here we present evidence that the Krebs cycle metabolite citrate affects the activity of Escherichia coli polynucleotide phosphorylase (PNPase) and, conversely, that cellular metabolism is affected widely by PNPase activity. An E. coli strain that requires PNPase for viability has suppressed growth in the presence of increased citrate concentration. Transcriptome analysis reveals a PNPase-mediated response to citrate, and PNPase deletion broadly impacts on the metabolome. In vitro, citrate directly binds and modulates PNPase activity, as predicted by crystallographic data. Binding of metal-chelated citrate in the active site at physiological concentrations appears to inhibit enzyme activity. However, metal-free citrate is bound at a vestigial active site, where it stimulates PNPase activity. Mutagenesis data confirmed a potential role of this vestigial site as an allosteric binding pocket that recognizes metal-free citrate. Collectively, these findings suggest that RNA degradative pathways communicate with central metabolism. This communication appears to be part of a feedback network that may contribute to global regulation of metabolism and cellular energy efficiency.


Assuntos
Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Sítio Alostérico , Ácido Cítrico/química , Clonagem Molecular , Cristalografia por Raios X/métodos , Deleção de Genes , Metabolômica/métodos , Metais/química , Modelos Químicos , Mutagênese , Análise de Sequência com Séries de Oligonucleotídeos , Polímeros/química , Ligação Proteica
18.
J Mol Biol ; 349(2): 387-400, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15890203

RESUMO

VceR, a member of the TetR family of transcriptional regulators, is a repressor of the vceCAB operon, which encodes a multidrug efflux pump in Vibrio cholerae. VceR binds to a 28 bp inverted-repeat within the vceR-vceC intergenic region and is dissociated from this site with CCCP, a pump substrate. The rate of the CCCP-induced conformational change in VceR was determined by stopped-flow fluorescence spectroscopy, revealing a highly co-operative process that occurs with a Hill coefficient of approximately 4. The apparent affinity for CCCP decreased in a linear manner with increasing concentrations of DNA, indicative of competition between the CCCP and DNA for binding to VceR. These data are consistent with an equilibrium between mutually exclusive conformations that are supported by the binding of DNA and CCCP to the N and C termini of VceR, respectively. Size-exclusion chromatography and dynamic light-scattering studies indicate that VceR exists predominantly as a dimer; however, a pair of dimers binds to the DNA. In order to account for the fact that VceR is a dimer in the absence of DNA but binds CCCP with a Hill co-efficient of 4, implying that it has at least four binding-sites, we propose that the VceR monomer possesses a pair of binding sites that can be simultaneously occupied by CCCP. Using a gene-reporter system and stopped-flow spectroscopy, we established that the equilibrium between free VceR and VceR-CCCP plays a critical role in controlling expression of the pump. The co-operative transition between these states allows the repressor to respond to relatively small changes in drug concentration. Thus, repression and induction can be readily switched about a critical drug concentration which will prove toxic to the cell.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Óperon/genética , Regiões Promotoras Genéticas/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Ligação Competitiva , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , DNA/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Dimerização , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Vibrio cholerae/genética
19.
J Biol Chem ; 280(15): 15307-14, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15684414

RESUMO

Multidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.8 A resolution. The trimeric VceC is organized in the crystal lattice within laminar arrays that resemble membranes. A well resolved detergent molecule within this array interacts with the transmembrane beta-barrel domain in a fashion that may mimic protein-lipopolysaccharide contacts. Our analyses of the external surfaces of VceC and other channel proteins suggest that different classes of efflux pumps have distinct architectures. We discuss the implications of these findings for mechanisms of drug and protein export.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Membrana/química , Vibrio cholerae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Dimerização , Resistência Microbiana a Medicamentos , Bombas de Íon/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Prótons , Homologia de Sequência de Aminoácidos , Eletricidade Estática
20.
Zhonghua Jie He He Hu Xi Za Zhi ; 26(1): 14-7, 2003 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-12775262

RESUMO

OBJECTIVE: To evaluate the effects of corticosteroids on the prognosis of sarcoidosis. METHOD: There were analysis and comparison on the prognosis of natural course and corticosteroids therapy of 133 patients with sarcoidosis diagnosed by biopsy pathologic histology follow-up over 4 years. RESULTS: Six of the 7 patients with ocular sarcoidosis were cured by oral prednisone (PRED), and 1 patient receiving intraocular dexamethasone lost his sight. In patients with extra-pulmonary sarcoidosis who were not treated, 33 of the 38 cases underwent spontaneous remission, but another 5 cases progressed. Twenty-two of the 26 patients with stage I pulmonary disease underwent spontaneous remission, 3 progressed, with only one case cured by PRED therapy. In the 55 patients with stage II pulmonary sarcoidosis who received PRED therapy, the chest roentgenogram and lung function were back to normal in 45 cases, but 10 cases failed. One patient with stage II pulmonary disease without treatment progressed to stage IV. Three patients with stage III pulmonary sarcoidosis were cured by PRED therapy, but III patients with stage IV sarcoidosis failed to respond to PRED therapy. CONCLUSIONS: Systematic therapy with oral corticosteroids for ocular and stage II approximately III pulmonary sarcoidosis is a curative intervention. Corticosteroids can relieve symptoms, reduce inflammation, and improve the prognosis of ocular and pulmonary sarcoidosis.


Assuntos
Corticosteroides/uso terapêutico , Sarcoidose Pulmonar/tratamento farmacológico , Adolescente , Corticosteroides/efeitos adversos , Adulto , Oftalmopatias/diagnóstico , Oftalmopatias/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Sarcoidose/diagnóstico , Sarcoidose/tratamento farmacológico , Sarcoidose Pulmonar/diagnóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...