Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 95, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840217

RESUMO

OBJECTIVE: This scoping review aims to explore published literature testing Virtual Reality (VR) interventions for improving upper limb motor performance in children and adolescents with Developmental Coordination Disorder (DCD). Our primary focus was on the types of VR systems used and the measurement tools employed within the International Classification of Functioning, Disability and Health Children and Youth Version (ICF-CY) domains in these studies. METHODS: A comprehensive search of six electronic databases up to 11th January 2024 was conducted using predefined terms. Inclusion and exclusion criteria were applied to determine study eligibility, with two authors independently assessing titles, abstracts, and full-text articles. RESULTS: Out of 788 potential studies, 14 met the eligibility criteria. Studies predominantly utilized non-immersive VR (nVR) systems, for example, commercial platforms such as Nintendo Wii. Most interventions targeted general motor coordination or balance, with only four studies specifically focusing on upper limb motor performance. The Movement Assessment Battery for Children-2 was the predominant assessment tool. However, the use of game scores and trial durations raised concerns about the accuracy of assessments. The majority of studies reported no significant improvement in upper limb motor performance following VR interventions, though some noted improvements in specific tasks or overall outcomes. CONCLUSION: The findings suggest that, while nVR interventions are being explored for paediatric motor rehabilitation, their impact on enhancing upper limb motor performance in children with DCD is unclear. The variability in intervention designs, outcome measures, and the predominant focus on general motor skills rather than specific upper limb improvements highlight the need for more targeted research in this area. IMPACT: This review underscores the importance of developing precise and clinically relevant measurement tools in a broader range of VR technologies to optimize the use of VR in therapy for children with DCD. Future research should aim for more rigorous study designs and emerging immersive technologies to maximize therapeutic benefits.


Assuntos
Transtornos das Habilidades Motoras , Extremidade Superior , Humanos , Transtornos das Habilidades Motoras/reabilitação , Transtornos das Habilidades Motoras/diagnóstico , Criança , Adolescente , Extremidade Superior/fisiopatologia , Realidade Virtual , Jogos de Vídeo , Classificação Internacional de Funcionalidade, Incapacidade e Saúde , Destreza Motora/fisiologia , Terapia de Exposição à Realidade Virtual/métodos
2.
ACS Appl Mater Interfaces ; 16(13): 16669-16677, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514924

RESUMO

Two-dimensional (2D) van der Waals heterostructures (vdW HSs) composed of transition metal dichalcogenides (TMDCs) have emerged as frontrunners in the optoelectronics field, owing to their exceptional optical and electrical properties. Recent research on the intrinsic interlayer charge transfer mechanism has been primarily focused on the Type II HSs, while metal-semiconductor (MS) vertical HSs, promising for advancing photodetector technology, have received comparatively less attention. Here, we reveal the first experimental observation of photothermionic effect-assisted ultrafast interlayer charge transfer in the NbS2/MoS2 heterostructure using femtosecond transient absorption technology and first-principles calculations, effectively ignoring the Schottky barrier height. We demonstrate that within 500 fs, charge transfer occurs from NbS2 to MoS2 in the heterostructure, resulting in supplementary carrier generation in the visible spectrum when excited with infrared light below the MoS2 bandgap, at wavelengths of 1030 and 1500 nm. Such promising characteristics of 2D NbS2-semiconductor heterostructures offer a potential platform for synergistically combining low contact resistance with broadband photocarrier generation, marking a significant advancement in optoelectronics and light harvesting.

3.
Opt Lett ; 49(2): 391-394, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194576

RESUMO

High-quality micro-resonators on thin-film lithium niobate (TFLN) have emerged as an ideal platform for on-chip nonlinear optical applications due to their strong light confinement and excellent natural nonlinear optical properties. Here, we present high-efficiency second-harmonic generation (SHG) in micro-resonators on a TFLN based on the modal phase matching and natural quasi-phase matching. By optimizing the phase-matching conditions through thermal tuning, we demonstrate an on-chip SHG efficiency of 149,000%/W in the low power regime. Furthermore, we achieve an absolute conversion efficiency of 10.3% with a 0.3 mW pump power. Our work paves the way toward future efficient on-chip frequency conversion of classical and quantum light without the need for poling of the LN films.

4.
Int J Biol Macromol ; 253(Pt 3): 126862, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703971

RESUMO

The application of Chitosan (CS) in drug delivery systems, plant growth promotion, antibacterial potentiality and plant defense is significantly limited by its inability to dissolve in neutral solutions. In this work, CS with different molecular weights (Mw) has been oxidized, yielding five kinds of oxidized chitosan (OCS 1-5) with solubilities in neutral solutions. The results obtained from Fourier Transform Infrared Spectroscopy clearly showed the successful oxidation of the hydroxyl group to form aldehyde and carboxyl groups. And the CS derivatives showed the wrinkled and lamellar structures on the surface of OCS. The results of antifungal activity against Fusarium graminearum showed that the OCS dissolved in 2 % (V/V) acetic acid exhibited better performance of almost complete inhibition of mycelial growth compared with CS at the concentration of 500 µg/mL. Among the five OCS, OCS-4 exhibited the best antifungal effect and had the lowest EC50 value of 581.68 µg/mL in samples. OCS-4 displayed superior promoting effect on seed germination with a germination potential of 62.2 % at a concentration of 3 g/L and a germination rate of 74.5 %. Additionally, the other four OCS also showed excellent antifungal activity with dose-dependent manners. These results indicated that the OCS had excellent antifungal potential in agricultural production.


Assuntos
Antifúngicos , Quitosana , Antifúngicos/farmacologia , Antifúngicos/química , Peso Molecular , Quitosana/química , Reguladores de Crescimento de Plantas , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Nanoscale Adv ; 5(14): 3629-3633, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37441256

RESUMO

Herein, we have designed and synthesized a novel type-I photosensitizer (PhPA) via Rh-catalyzed oxidative cyclization of diacetoxyterephthalamide with alkynes. The photoelectric properties, photosensitivity and photodegradation process of PhPA have been systematically investigated. The remarkable fluorescence quenching effect (ΦPL < 0.01) of PhPA suggests that the intersystem crossing from the singlet excited state to the reactive triplet state is enhanced by the enlarged conjugated backbone. Additionally, the ability of superoxide radical (O2-˙) generation was confirmed by electron paramagnetic resonance spectroscopy. Finally, the mechanism of PhPA photo-oxidative degradation via the structure of two metabolites is proposed.

6.
Inorg Chem ; 62(31): 12337-12344, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37490736

RESUMO

Aerogels, as three-dimensional porous materials, have attracted much attention in almost every field owing to their unique structural properties. Designing high-entropy alloy aerogels (HEAAs) to quinary and above remains an enormous challenge due to the different reduction potentials and nucleation/growth kinetics of different constituent metals. Herein, a novel and universal chelating co-reduction strategy to prepare HEAAs at room temperature in the water phase is proposed. The addition of chelators (ethylenediaminetetraacetic acid tetrasodium salt, sodium citrate, salicylic acid, and 4,4'-bipyridine) with a certain strong coordination capacity can adjust the reduction potential of different metal components, which is the key to synthesize single-phase solid solution alloys successfully. The optimized AgRuPdAuPt HEAA can be an excellent electrocatalyst for hydrogen evolution reaction (HER) with an ultrasmall overpotential of 22 mV at 10 mA cm-2 and excellent stability for 24 h in an alkaline solution. In situ Raman spectroscopy unveils the enhanced hydrogen evolution reaction mechanism of HEAAs. Overall, this work provides a novel chelating co-reduction strategy for the facile and versatile synthesis and design of advanced HEAAs and broadens the development and utilization of multi-elemental alloy electrocatalysts.

7.
Opt Lett ; 48(12): 3159-3162, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319051

RESUMO

In this work, we report a highly efficient and tunable on-chip sum-frequency generation (SFG) on a thin-film lithium niobate platform via modal phase matching (e + e→e). It provides on-chip SFG a solution with both high efficiency and poling-free by using the highest nonlinear coefficient d33 instead of d31. The on-chip conversion efficiency of SFG is approximately 2143%W-1 with a full width at half maximum (FWHM) of 4.4 nm in a 3-mm-long waveguide. It can find applications in chip-scale quantum optical information processing and thin-film lithium niobate based optical nonreciprocity devices.


Assuntos
Dispositivos Ópticos , Óxidos , Costelas
8.
Opt Express ; 31(6): 9713-9726, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157534

RESUMO

In this contribution, we numerically investigate second harmonic generation in double-layered lithium niobate on the insulator platform by means of the modal phase matching. The modal dispersion of the ridge waveguides at the C waveband of optical fiber communication is calculated numerically and analyzed. Modal phase matching can be achieved by changing the geometric dimensions of the ridge waveguide. The phase-matching wavelength and conversion efficiencies versus the geometric dimensions in the modal phase-matching process are investigated. We also analyze the thermal-tuning ability of the present modal phase matching scheme. Our results show that highly efficient second harmonic generation can be realized by the modal phase matching in the double-layered thin film lithium niobate ridge waveguide.

9.
Materials (Basel) ; 15(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363025

RESUMO

The effects of surface dissolution on dislocation activation in FeSi6.5 steel are quantitatively studied by analyzing the stress relaxation data using the thermal activation theory of dislocation. The stressed FeSi6.5 steel sample in acid solutions (H2SO4 or HCl) exhibits a much higher rate of stress reduction with time compared with that in air or deionized water. As the stress relaxation time is prolonged to 20 min, the relaxation rates are 0.055 MPa·min-1 in water and 0.074, 0.1, 0.11 MPa·min-1 in H2SO4 solutions with pH 4, 3, and 2, respectively. In a NaCl solution, a slight increase in the relaxation rate compared with air was found. Higher acidity (lower pH) of the solution inducing higher stress relaxation rate implies the softening is associated with the anodic dissolution of the surface layer and the accelerated (additional) flow of dislocations. The analyses using the thermal activation theory of dislocation during relaxation reveal the mechanism for the accelerated plastic flow induced by the corrosive medium. The variations of these parameters are related to the relaxation of the stress field of dislocations and the weakening of interaction between slip dislocations and short-range obstacles. The chemomechanical effect, including a reduction in apparent activation energy and a decrease in waiting time for dislocation to obtain sufficient thermal activation energy to cross obstacles, causes an increase in the stress relaxation rate (plastic strain rate). The study confirms that surface dissolution accelerates the plastic flow of metals and supports the view that surface dissolution facilitates dislocation slip. It is helpful to improve the formability of brittle metals.

10.
Int J Biol Macromol ; 219: 1112-1121, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36049564

RESUMO

Fusarium graminearum (F. graminearum), a pathogen for Fusarium head blight (FHB) on wheat, significantly reduces wheat yield and poses potential threats to human food safety. In this study, graphene oxide (GO) modified chitosan (GO-CS composite) was synthesized and its antifungal activity against F. graminearum in vitro and in vivo was evaluated. The 1HNMR and FTIR results revealed the reaction between the carboxyl groups in GO and the amino groups in chitosan (CS). In vitro, the combination of GO and CS resulted in a significant synergistic inhibitory effect on the mycelial growth of F. graminearum relative to single GO or CS. The EC50 value of the GO-CS composite was 14.07 µg/mL, which was much lower than that of GO or CS alone. In vivo, the GO-CS composite significantly reduced the disease incidence and severity compared with single GO or CS, and the control efficacy could reach 60.01 %. Microbial cells might be ultimately damaged when interacting with GO-CS due to various mechanisms such as biological effects and physical barriers. Overall, the combination of GO and CS provides new opportunities for their application in the control of fungi.


Assuntos
Quitosana , Fusarium , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Grafite , Humanos , Doenças das Plantas/microbiologia
11.
J Biomater Sci Polym Ed ; 33(12): 1495-1510, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35443893

RESUMO

Chitosan biomaterials are widely used in the biological area because of their broad-spectrum antibacterial activity. However, chitosan cannot be dissolved in a neutral solution, limiting its application in various fields seriously. In this study, water-soluble sulfonated oxidized chitosan (SOCS) with antifungal activity were prepared by oxidization and sulfonation. Its structure was clearly confirmed by spectroscopy data (FTIR, 1H NMR, 13C NMR) and elemental analysis. SEM images of OCS and SOCS revealed that there was a little curly and an irregular sheet-like morphologies on them which was attributed to the oxidation and sulfonation on CS. Moreover, the FTIR and NMR indicated that -OH on the CS was oxidized into -COOH on the OCS and -SO3H groups on the SOCS. The EDS results of OCS and SOCS confirmed the presence of the oxygen element in OCS and the S element in SOCS. All studies confirmed the OCS and SOCS were synthesized successfully. Furthermore, the inhibitory activity of SOCS biocomposites against plant pathogenic fungi, (Fusarium graminearum), was investigated. The results showed that the SOCS have significant inhibitory effects on the mycelial growth of F. graminearum. The EC50 value of SOCS against F. graminearum is 79.46 µg/mL. The research results presented above indicated that SOCS can be used as a candidate material for the control of plant pathogenic fungi, and can broaden the application of chitosan materials in plant protection and sustainable agriculture.Research highlightsSOCS showed better solubility in deionized water.The antifungal effect of SOCS dissolved in acetic acid was higher than that of CS dissolved in acetic acid.SOCS dissolved in water can cause an inhibitory effect on F. graminearum at lower concentrations.


Assuntos
Quitosana , Fusarium , Antifúngicos/química , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Água
12.
Front Genet ; 12: 669441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093660

RESUMO

Human height is a polygenic trait, influenced by a large number of genomic loci. In the pre-genomic era, height prediction was based largely on parental height. More recent predictions of human height have made great strides by integrating genotypic data from large biobanks with improved statistical techniques. Nevertheless, recent studies have not leveraged parental height, an added feature that we hypothesized would offer complementary predictive value. In this study, we assessed the predictive power of polygenic risk scores (PRS) combined with the traditional parental height predictors. Our study analyzed genotypic data and parental height from 1,071 trios from the United Kingdom Biobank and 444 trios from the Framingham Heart Study. We explored a series of statistical models to fully evaluate the performance of several PRS constructed together with parental information and proposed a model we call PRS++ that includes gender, parental height, and PRSs of parents and proband. Our estimate of height with an R 2 of ∼0.82 is, to our knowledge, the most accurate estimate yet achieved for predicting human adult height. Without parental information, the R 2 from the best PRS-driven model is ∼0.73. In summary, using adult height prediction as an example, we demonstrated that traditional predictors still play important roles and merit integration into the current trends of intensive PRS approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...