Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39024158

RESUMO

Meditation, mental training that aims to improve one's ability to regulate their cognition, has been widely applied in clinical medicine. However, the mechanism by which meditation affects brain activity is still unclear. To explore this question, electroencephalogram data were recorded in 20 long-term meditators and 20 nonmeditators during 2 high-level cognitive tasks (meditation and mental calculation) and a relaxed resting state (control). Then, the power spectral density and phase synchronization of the electroencephalogram were extracted and compared between these 2 groups. In addition, machine learning was used to discriminate the states within each group. We found that the meditation group showed significantly higher classification accuracy and calculation efficiency than the control group. Then, during the calculation task, both the power and global phase synchronism of the gamma response decreased in meditators compared to their relaxation state; yet, no such change was observed in the control group. A potential explanation for our observations is that meditation improved the flexibility of the brain through neural plastic mechanism. In conclusion, we provided robust evidence that long-term meditation experience could produce detectable neurophysiological changes in brain activity, which possibly enhance the functional segregation and/or specialization in the brain.


Assuntos
Atenção , Encéfalo , Eletroencefalografia , Meditação , Humanos , Masculino , Atenção/fisiologia , Encéfalo/fisiologia , Feminino , Adulto , Pessoa de Meia-Idade , Aprendizado de Máquina
2.
Artigo em Inglês | MEDLINE | ID: mdl-38386573

RESUMO

Dynamic functional connectivity (FC) analyses have provided ample information on the disturbances of global functional brain organization in patients with schizophrenia. However, our understanding about the dynamics of local FC in never-treated first episode schizophrenia (FES) patients is still rudimentary. Dynamic Regional Phase Synchrony (DRePS), a newly developed dynamic local FC analysis method that could quantify the instantaneous phase synchronization in local spatial scale, overcomes the limitations of commonly used sliding-window methods. The current study performed a comprehensive examination on both the static and dynamic local FC alterations in FES patients (N = 74) from healthy controls (HCs, N = 41) with resting-state functional magnetic resonance imaging using DRePS, and compared the static local FC metrics derived from DRePS with those calculated from two commonly used regional homogeneity (ReHo) analysis methods that are defined based on Kendall's coefficient of concordance (KCC-ReHo) and frequency coherence (Cohe-ReHo). Symptom severities of FES patients were assessed with a set of clinical scales. Cognitive functions of FES patients and HCs were assessed with the MATRICS consensus cognitive battery. Group-level analysis revealed that compared with HCs, FES patients exhibited increased static local FC in right superior, middle temporal gyri, hippocampus, parahippocampal gyrus, putamen, and bilateral caudate nucleus. Nonetheless, the dynamic local FC metrics did not show any significant differences between the two groups. The associations between all local FC metrics and clinical characteristics manifested scores were explored using a relevance vector machine. Results showed that the Global Assessment of Functioning score highest in past year and the Brief Visuospatial Memory Test-Revised task score were statistically significantly predicted by a combination of all static and dynamic features. The diagnostic abilities of different local FC metrics and their combinations were compared by the classification performance of linear support vector machine classifiers. Results showed that the inclusion of zero crossing ratio of DRePS, one of the dynamic local FC metrics, alongside static local FC metrics improved the classification accuracy compared to using static metrics alone. These results enrich our understanding of the neurocognitive mechanisms underlying schizophrenia, and demonstrate the potential of developing diagnostic biomarker for schizophrenia based on DRePS.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Benchmarking , Encéfalo/diagnóstico por imagem , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA