Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109324, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706854

RESUMO

Digital liquid sample handling is an enabling tool for cutting-edge life-sciences research. We present here an active-matrix thin-film transistor (TFT) based digital microfluidics system, referred to as Field Programmable Droplet Array (FPDA). The system contains 256 × 256 pixels in an active area of 10.65 cm2, which can manipulate thousands of addressable liquid droplets simultaneously. By leveraging a novel TFT device and circuits design solution, we manage to programmatically manipulate droplets at single-pixel level. The minimum achievable droplet volume is around 0.5 nL, which is two orders of magnitude smaller than the smallest droplet ever reported on active-matrix digital microfluidics. The movement of droplets can be either pre-programmed or controlled in real-time. The FPDA system shows great potential of the ubiquitous thin-film electronics technology in digital liquid handling. These efforts will make it possible to create a true programmable lab-on-a-chip device to enable great advances in life science research.

2.
Lab Chip ; 24(8): 2193-2201, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38465383

RESUMO

Automated concentration gradient generation is one of the most important applications of lab-on-a-chip devices. Digital microfluidics is a unique platform that can effectively achieve digitalized gradient concentration preparation. However, the dynamic range and concentration resolution of the prepared samples heavily rely on the size and the number of effective electrodes. In this work, we report an active-matrix digital microfluidic device with polar coordinate electrode arrangement. The device contains 33 different electrode sizes, generating digital droplets of different volumes. To compare with the conventional rectangular coordinate arrangement with a similar electrode number, this work shows an approximately 19 times resolution enhancement for the achievable concentration gradient. We characterized the stability and uniformity of droplets generated by electrodes of different sizes, and the coefficient of variation of stable droplets was less than 3%. The fluorescent nanomaterial's concentration quantification and glucose concentration characterization experiments were also conducted, and the correlation coefficients for the linearities were all above 0.99.

3.
Materials (Basel) ; 15(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234175

RESUMO

The atomic scale local structures affect the initiation performance of ultra-fine explosives according to the stimulation results of hot spot formation. However, the experimental characterization of local structures in ultra-fine explosives has been rarely reported, due to the difficulty in application of characterization methods having both high resolution in and small damage to unstable organic explosive materials. In this work, X-ray total scattering was explored to investigate the atomic scale local distortion of two widely applicable ultra-fine explosives, LLM-105 and HNS. The experimental spectra of atomic pair distribution function (PDF) derived from scattering results were fitted by assuming rigid ring structures in molecules. The effects of grain refinement and thermal aging on the atomic scale local structure were investigated, and the changes in both the length of covalent bonds have been identified. Results indicate that by decreasing the particle size of LLM-105 and HNS from hundreds of microns to hundreds of nanometers, the crystal structures remain, whereas the molecular configuration slightly changes and the degree of structural disorder increases. For example, the average length of covalent bonds in LLM-105 reduces from 1.25 Å to 1.15 Å, whereas that in HNS increases from 1.25 Å to 1.30 Å, which is possibly related to the incomplete crystallization process and internal stress. After thermal aging of ultra-fine LLM-105 and HNS, the degree of structural disorder decreases, and the distortion in molecules formed in the synthesis process gradually healed. The average length of covalent bonds in LLM-105 increases from 1.15 Å to 1.27 Å, whereas that in HNS reduces from 1.30 Å to 1.20 Å. The possible reason is that the atomic vibration in the molecule intensifies during the heat aging treatment, and the internal stress was released through changes in molecular configuration, and thus the atomic scale distortion gradually heals. The characterization method and findings in local structures obtained in this work may pave the path to deeply understand the relationship between the defects and performance of ultra-fine explosives.

4.
ACS Appl Mater Interfaces ; 14(36): 41361-41368, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048915

RESUMO

Spin defects like the negatively charged boron vacancy color center (VB-) in hexagonal boron nitride (hBN) may enable new forms of quantum sensing with near-surface defects in layered van der Waals heterostructures. Here, the effect of strain on VB- color centers in hBN is revealed with correlative cathodoluminescence and photoluminescence microscopies. Strong localized enhancement and redshifting of the VB- luminescence is observed at creases, consistent with density functional theory calculations showing VB- migration toward regions with moderate uniaxial compressive strain. The ability to manipulate spin defects with highly localized strain is critical to the development of practical 2D quantum devices and quantum sensors.

5.
J Phys Chem Lett ; 12(40): 9754-9760, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34592105

RESUMO

Two-dimensional hybrid organic-inorganic perovskites (HOIPs) have recently drawn intense attention as potential photovoltaic materials. However, n = 1 two-dimensional (2D) HOIPs face the challenge of low conductivity between the inorganic layers, leading to unsatisfactory device performance. Interestingly, 2D HOIPs employing π-conjugated molecules as organic moieties show energy and charge transfers between organic and inorganic layers, indicating potentially efficient carrier transport for photovoltaic applications. Nevertheless, the development of 2D HOIP-based solar cells especially utilizing polycyclic aromatic alkylammonium as cations is in its infancy. Herein, we investigated the electronic structure and band alignment of a series of n = 1 2D Ruddlesden-Popper (RP) phase HOIPs containing different polycyclic aromatic groups and alkyl chains, based on density functional theory calculations. We find that the polycyclic aromatic group plays an important role in controlling the functionality of 2D HOIPs by directly modifying band-edge states, and the band alignment at the organic-inorganic interface can be designed to promote either exciton trapping or dissociation for light-emitting or photovoltaic applications, respectively.

6.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578498

RESUMO

As nano-aluminum powder (NAP) can improve the detonation performance of aluminum-containing explosives, more and more explosives with NAP as the metal ingredient have been studied. It is believed that the mechanical sensitivity of explosives can be significantly enhanced by the added nano-sized aluminum powder. However, the mechanism for the enhancement has not been clarified. In order to illuminate the effects of NAP on the mechanical sensitivity of explosives, two RDX-based aluminum-containing explosives with the same weight ratio and preparation process were investigated despite the aluminum powders with different nano-size and micron-size. The morphology and surface atomic ratio of the two explosives were examined by scanning electron microscopy with energy dispersive spectroscopy tests. The contact angle and other microstructures properties of the explosives were calculated by Material Studio software. Results revealed that the impact and friction activity was determined by the aluminum particle sizes and explosive components. This paper clarified the mechanism for the increase in explosives sensitivity by the addition of NAP, which provide reference for the scientific and technical design of novel explosives.

7.
J Am Chem Soc ; 143(31): 12369-12379, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339219

RESUMO

The emergence of halide double perovskites significantly increases the compositional space for lead-free and air-stable photovoltaic absorbers compared to halide perovskites. Nevertheless, most halide double perovskites exhibit oversized band gaps (>1.9 eV) or dipole-forbidden optical transition, which are unfavorable for efficient single-junction solar cell applications. The current device performance of halide double perovskite is still inferior to that of lead-based halide perovskites, such as CH3NH3PbI3 (MAPbI3). Here, by ion type inversion and anion ordering on perovskite lattice sites, two new classes of pnictogen-based quaternary antiperovskites with the formula of X6B2AA' and X6BB'A2 are designed. Phase stability and tunable band gaps in these quaternary antiperovskites are demonstrated based on first-principles calculations. Further photovoltaic-functionality-directed screening of these materials leads to the discovery of 5 stable compounds (Ca6N2AsSb, Ca6N2PSb, Sr6N2AsSb, Sr6N2PSb, and Ca6NPSb2) with suitable direct band gaps, small carrier effective masses and low exciton binding energies, and dipole-allowed strong optical absorption, which are favorable properties for a photovoltaic absorber material. The calculated theoretical maximum solar cell efficiencies based on these five compounds are all larger than 29%, comparable to or even higher than that of the MAPbI3 based solar cell. Our work reveals the huge potential of quaternary antiperovskites in the optoelectronic field and provides a new strategy to design lead-free and air-stable perovskite-based photovoltaic absorber materials.

8.
Materials (Basel) ; 14(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34443253

RESUMO

In relatively cold environments, the combination of freeze-thaw and steel bar corrosion is a key factor affecting the durability of concrete. The adjustment of the stirrup ratio would change the mechanical performance of surrounding concrete, while the circumferential compressive stress can further improve the bonding performance. Hence, based on eccentrically tensioned specimens, the influence of corrosion of stirrups and freeze-thaw of concrete on bond properties is discussed in this paper. The monotonic pull-out test of reinforced concrete specimens is carried out to study the variation rules of bond strength and slip between steel bar and concrete under the coupling action of corrosion rate, freeze-thaw times and stirrup spacing. Based on the experimental data, the empirical formula for the ultimate bond strength is obtained, and a bond-slip constitutive model is established considering the stirrup spacing, stirrup corrosion rate and freeze-thaw times. Then, a refined finite element pull-out specimen model is established by ABAQUS simulation, and the numerical simulation results are compared with the real test ones, so as to make up for the deficiencies in the test and lay the foundation for further finite element analysis.

9.
J Phys Chem Lett ; 12(34): 8229-8236, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34423990

RESUMO

Ionically bonded organic metal halide hybrids have emerged as versatile multicomponent material systems exhibiting unique and useful properties. The unlimited combinations of organic cations and metal halides lead to the tremendous structural diversity of this class of materials, which could unlock many undiscovered properties of both organic cations and metal halides. Here we report the synthesis and characterization of a series benzoquinolinium (BZQ) metal halides with a general formula (BZQ)Pb2X5 (X = Cl, Br), in which metal halides form a unique two-dimensional (2D) structure. These BZQ metal halides are found to exhibit enhanced photoluminescence and stability as compared to the pristine BZQ halides, due to the scaffolding effects of 2D metal halides. Optical characterizations and theoretical calculations reveal that BZQ+ cations are responsible for the emissions in these hybrid materials. Changing the halide from Cl to Br introduces heavy atom effects, resulting in yellow room temperature phosphorescence (RTP) from BZQ+ cations.

10.
Bioengineered ; 12(1): 844-854, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33678122

RESUMO

Microbial fuel cells (MFC) can use microorganisms to directly convert the chemical energy of organic matter into electrical energy, and generate electrical energy while pollutants degradation. To solve the critical problem of lower power yield of power production, this study selected Saccharomyces cerevisiae, Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis as the anodic inoculums. The influence of the mixed bacteria on the power-producing effect of MFC and the synergy effect between the electrochemically active bacteria in mixed cultures were discussed. The results showed that among the mixed culture system, only the mixed cultures MFC composed of Saccharomyces cerevisiae and Bacillus subtilis had a significant increase in power generation capacity, which could reach to 554 mV. Further analysis of the electrochemical and microbiological performance of this system was conducted afterward to verify the synergy effect between Saccharomyces cerevisiae and Bacillus subtilis. The riboflavin produced by Bacillus subtilis could be utilized by Saccharomyces cerevisiae to enhance the power generation capacity. Meanwhile, Saccharomyces cerevisiae could provide carbon source and electron donor for Bacillus subtilis through respiration. Finally, in the experiment of adding exogenous riboflavin in the mixed bacterial MFC, the result indicated that the mixed bacterial MFC chose the self-secreting riboflavin over the exogenous riboflavin as the electron mediator, and the excess riboflavin might hinder the electron trasfer.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Interações Microbianas/fisiologia , Saccharomyces cerevisiae/metabolismo , Eletrodos/microbiologia , Riboflavina/metabolismo
11.
Inorg Chem ; 60(2): 1045-1054, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33397099

RESUMO

Low-dimensional hybrid organic-inorganic metal halides have received increased attention because of their outstanding optical and electronic properties. However, the most studied hybrid compounds contain lead and have long-term stability issues, which must be addressed for their use in practical applications. Here, we report a new zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissive InBr4- tetrahedral anions. The crystal structure of RInBr4 is composed of alternating layers of inorganic anions and organic cations along the crystallographic a axis. The resultant hybrid demonstrates bright-blue emission with Commission Internationale de l'Eclairage color coordinates of (0.19, 0.20) and a high photoluminescence quantum yield (PLQY) of 16.36% at room temperature, a 2-fold increase compared to the PLQY of 8.15% measured for the precursor organic salt RBr. On the basis of our optical spectroscopy and computational work, the organic component is responsible for the observed blue emission of the hybrid material. In addition to the enhanced light emission efficiency, the novel hybrid indium bromide demonstrates significantly improved environmental stability. These findings may pave the way for the consideration of hybrid organic In(III) halides for light emission applications.

12.
ACS Mater Au ; 1(1): 62-68, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855617

RESUMO

Recently, ternary copper(I) halides have emerged as alternatives to lead halide perovskites for light emission applications. Despite their high-efficiency photoluminescence (PL) properties, most copper(I) halides are blue emitters with unusually poor tunability of their PL properties. Here, we report the impact of substitution of copper with silver in the high-efficiency blue-emitting Cu(I) halides through hydrothermal synthesis and characterization of (NH4)2AgX3 (X = Br, I). (NH4)2AgX3 are found to exhibit contrasting light emission properties compared to the blue-emitting Cu(I) analogues. Thus, (NH4)2AgBr3 and (NH4)2AgI3 exhibit broadband whitish light emission at room temperature with PL maxima at 394 and 534 nm and full width at half-maximum values of 142 and 114 nm, respectively. Based on our combined experimental and computational results, the broadband emission in (NH4)2AgX3 is attributed to the presence of high-stability self-trapped excitons and defect-bound excitons. (NH4)2AgBr3 and (NH4)2AgI3 both have significantly improved air and moisture stability as compared to the related copper(I) halides, which are prone to degradation via oxidation. Our results suggest that silver halides should be considered alongside their copper analogues for high-efficiency light emission applications.

13.
Materials (Basel) ; 13(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203049

RESUMO

Extended end-plate (EP) bolted connections are widely used in steel structures as moment-resisting connections. Most of these connections are semi-rigid or in other words flexible. The paper aims to study the behavior of such connections under the effect of column top-side cyclic loading using the finite element (FE) method. For semi-rigid connections, it is very vital to determine the moment-rotation relationship as well as the connection stiffness. These beam-column connections have been parametrically studied, the effect of joint type, shear forces, diameter of bolt, thickness of end-plate, and end-plate style were studied. Parametric studies show that the panel zone shear force is the key factor and has a significant effect on the connection stiffness. Finally, based on the component method, the stiffness of the bending component is improved, and the initial stiffness calculation model of the connection under column top-side cyclic loadings is established. The results show that the calculation model is in good agreement with the finite element analyses, and this proves that the calculation model proposed in this study could act as a reference method.

14.
Nanomaterials (Basel) ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065993

RESUMO

To improve the engine-driven performance of propellants, high-energy alloys such as Al and Mg are usually adopted as annexing agents. However, there is still room for improvement in the potential full utilization of alloy energy. In this study, we investigated how to improve combustion efficiency by decorating Al3Mg2 alloy with multilayer graphene and amorphous boron. Scanning electron microscopy and Raman tests showed that decorating with multilayer graphene and amorphous boron promoted the dispersion of Al3Mg2 alloy. The results showed that decorating with 1% boron and 2% multilayer graphene improved the combustion heat of Al3Mg2 alloy to 32.8 and 30.5 MJ/kg, respectively. The coexistence of two phases improved the combustion efficiency of the matrix Al3Mg2 alloy.

15.
Sci Adv ; 6(37)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32917707

RESUMO

Halide perovskites have undergone remarkable developments as highly efficient optoelectronic materials for a variety of applications. Several studies indicated the critical role of defects on the performance of perovskite devices. However, the parameters of defects and their interplay with free charge carriers remain unclear. In this study, we explored the dynamics of free holes in methylammonium lead tribromide (MAPbBr3) single crystals using the time-of-flight (ToF) current spectroscopy. By combining ToF spectroscopy and Monte Carlo simulation, three energy states were detected in the bandgap of MAPbBr3 In addition, we found the trapping and detrapping rates of free holes ranging from a few microseconds to hundreds of microseconds. Contrary to previous studies, we revealed a strong detrapping activity of traps. We showed that these traps substantially affect the transport properties of MAPbBr3, including mobility and mobility-lifetime product. Our results provide an insight on charge transport properties of perovskite semiconductors.

16.
J Am Chem Soc ; 142(37): 16001-16006, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32870668

RESUMO

Low-dimensional perovskite-related metal halides have emerged as a new class of light-emitting materials with tunable broadband emission from self-trapped excitons (STEs). Although various types of low-dimensional structures have been developed, fundamental understating of the structure-property relationships for this class of materials is still very limited, and further improvement of their optical properties remains greatly important. Here, we report a significant pressure-induced photoluminescence (PL) enhancement in a one-dimensional hybrid metal halide C4N2H14PbBr4, and the underlying mechanisms are investigated using in situ experimental characterization and first-principles calculations. Under a gigapascal pressure scale, the PL quantum yields (PLQYs) were quantitatively determined to show a dramatic increase from the initial value of 20% at ambient conditions to over 90% at 2.8 GPa. With in situ characterization of photophysical properties and theoretical analysis, we found that the PLQY enhancement was mainly attributed to the greatly suppressed nonradiative decay. Pressure can effectively tune the energy level of self-trapped states and increase the exciton binding energy, which leads to a larger Stokes shift. The resulting highly localized excitons with stronger binding reduce the probability for carrier scattering, to result in the significantly suppressed nonradiative decay. Our findings clearly show that the characteristics of STEs in low-dimensional metal halides can be well-tuned by external pressure, and enhanced optical properties can be achieved.

17.
Phys Chem Chem Phys ; 21(45): 25108-25117, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31691694

RESUMO

Phosphors that emit in the deep-red spectral region are critical for plant cultivation light-emitting diodes. Herein, ultrabroadband deep-red luminescence of Mn4+ in La4Ti3O12 was studied, which showed intense zero phonon line emission. The double-perovskite structural La4Ti3O12 simultaneously contains two Ti4+ sites forming slightly- and highly-distorted TiO6 octahedra, respectively. The influence of octahedral distortion on the Mn4+ emission energy in the two distinct Ti4+ sites was studied both experimentally and theoretically. The spectral measurements indicated that Mn4+ in La4Ti3O12 showed intense zero phonon line emission (ZPL) at deep-red 710-740 nm under excitation of 400 nm charging the O2-→ Mn4+ charge transfer transition. The splitting of the ZPL of the Mn4+ 2Eg→4A2g transition as well as the intensity of ZPL relative to the vibronic phonon sideband emissions were found to be greatly influenced by the degree of octahedral distortion. The crystal-field strength and Racah parameters of Mn4+ in each Ti4+ site were also estimated. The Mn4+ 2Eg→4A2g luminescence exhibited severe thermal quenching, which was explained by the low-lying 4T2g level and charge-transfer state.

18.
J Chem Phys ; 151(18): 181101, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731850

RESUMO

Low-dimensional halide perovskites exhibit intriguing excitonic properties and emerge as an important class of self-activated luminescent materials. However, the ability to manipulate and optimize their luminescent properties is limited by the lack of the microscopic understanding of the exciton relaxation and emission and the inconsistency in the theoretical results in the literature. In this work, based on first-principles calculations, we studied excitons in 1D lead halide perovskites, C4N2H14PbBr4 and C4N2H14PbCl4, which are both bright visible-light emitters. We find that, in both compounds, the polaron-pair exciton (EX-PP) is more stable than the onsite exciton (EX-OS) and only the EX-PP emission energy from the calculation is close to the main photoluminescence (PL) peak observed in the experiment. The EX-OS is found to emit UV light in both compounds. Therefore, the EX-PP is responsible for the experimentally observed visible light emission in both C4N2H14PbBr4 and C4N2H14PbCl4. Furthermore, the calculated small energy difference between the EX-PP and EX-OS in C4N2H14PbBr4 suggests that the metastable EX-OS can be thermally populated at room temperature (RT); the calculated EX-OS emission energy agrees well with the energy of a minor PL peak observed at RT but not at 77 K. The validity our approach in the exciton calculation is supported by the benchmark of the calculated exciton emission energies against the experimental results in 13 0D and 1D metal halides. The discrepancies between this work and a recent theoretical study in the literature are also discussed.

19.
Chemistry ; 25(42): 9875-9884, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31087790

RESUMO

Perovskite solar cells have recently enabled power conversion efficiency comparable to established technologies such as silicon and cadmium telluride. Ongoing efforts to improve the stability of halide perovskites in ambient air has yielded promising results. However, the presence of toxic heavy element lead (Pb) remains a major concern requiring further attention. Herein, we report three new Pb-free hybrid organic-inorganic perovskite-type halides based on gold (Au), (CH3 NH3 )AuBr4 ⋅H2 O (1), (CH3 NH3 )AuCl4 ⋅H2 O (2), and (CH3 NH3 )AuCl4 (3). Hydrated compounds 1 and 2 crystallize in a brand-new structure type featuring perovskite-derived 2D layers and 1D chains based on pseudo-octahedral AuX6 building blocks. In contrast, the novel crystal structure of the solvent-free compound 3 shows an exotic non-perovskite quasi-2D layered structure containing edge- and corner-shared AuCl6 octahedra. The use of Au metal instead of Pb results in unprecedented low band gaps below 2.5 eV for single-layered metal chlorides and bromides. Moreover, at room temperature the three compounds show a weak blue emission due to the electronic transition between Au-6s and Au-5d, in agreement with the density function theory (DFT) calculation results. These findings are discussed in the context of viability of Au-based halides as alternatives for Pb-based halides for optoelectronic applications.

20.
Inorg Chem ; 58(7): 4446-4455, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30767513

RESUMO

Replacement of the toxic heavy element lead in metal halide perovskites has been attracting a great interest because the high toxicity and poor air stability are two of the major barriers for their widespread utilization. Recently, mixed-cation double perovskite halides, also known as elpasolites, were proposed as an alternative lead-free candidate for the design of nontoxic perovskite solar cells. Herein, we report a new nontoxic and air stable lead-free all-inorganic semiconductor Rb4Ag2BiBr9 prepared using the mixed-cation approach; however, Rb4Ag2BiBr9 adopts a new structure type (Pearson's code oP32) featuring BiBr6 octahedra and AgBr5 square pyramids that share common edges and corners to form a unique 2D layered non-perovskite structure. Rb4Ag2BiBr9 is also demonstrated to be thermally stable with the measured onset decomposition temperature of To = 520 °C. Optical absorption measurements and density functional theory calculations suggest a nearly direct band gap for Rb4Ag2BiBr9. Room temperature photoluminescence (PL) measurements show a broadband weak emission. Further, temperature-dependent and power-dependent PL measurements show a strong competition between multiple emission centers and suggest the coexistence of defect-bound excitons and self-trapped excitons in Rb4Ag2BiBr9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...