Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(21): 27311-27318, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747463

RESUMO

Motivated by the recent report on penta-MgN8 sheet [Mater. Today Phys. 2023, 38, 101259] that is the first realization of type-5 pentagonal 2D tessellation with exposed regularly distributed Mg ions, we carried out density functional theory studies on the interactions of H2 molecules with 1D penta-nanotube, 2D penta-sheet, and 3D porous structures based on penta-MgN8. We found that when the penta-MgN8 sheet is assembled to a 3D porous structure or curved to a nanotube, the bandgap increases from 1.18 to 1.35 and 1.88 eV, and the resulting derivatives are stable dynamically. When H2 molecules are introduced, the nanotube behaves best in adsorption, where each Mg ion can adsorb three H2 molecules: two on the outer surface and one on the inner surface. The curved geometry of the nanotube makes the Mg ion on the outer surface more exposed as compared with the situations of the 2D sheet and 3D porous structure, resulting in stronger adsorptions to H2. The gravimetric capacity (volumetric capacity) is 4.25 wt % (63 g/L) and 4.25 wt % (65 g/L) for the studied penta-sheet and penta-nanotube, and the corresponding desorption temperature is 115 and 162 K at 1 atm pressure, respectively, while for the 3D porous structure, the adsorption performance is poor due to the limited space and the less curvature, leading to strong steric hindrance and less exposed configuration for Mg ions. Moreover, the effects of temperature and pressure on adsorption are also discussed.

2.
ACS Appl Mater Interfaces ; 16(11): 14364-14370, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441873

RESUMO

Motivated by the recent experimental synthesis of a LaCl3-based lithium superionic conductor [Yin, Y.-C. Nature 2023, 616, 77-83], we explore the potential of a LaCl3-based system for a sodium superionic conductor in this work. Using density functional theory combined with molecular dynamics simulation and a grand potential phase diagram analysis, we find that the resulting Na3La5Cl18 exhibits high energetic stability with a small energy-above-hull of 18 meV per atom, a large band gap of 5.58 eV, a wide electrochemical window of 0.41-3.76 V from the cathodic to the anodic limit, and a high Na+ conductivity of 1.3 mS/cm at 300 K. Furthermore, Na3La5Cl18 shows high chemical interface stability with the reported high-potential cathode materials such as NaCoO2, NaCrO2, Na2FePO4F, Na3V2(PO4)3, and Na3V2(PO4)2F3. These findings clearly suggest that the LaCl3-based framework can be used as a building block not only for Li-ion but also for Na-ion batteries.

3.
ACS Appl Mater Interfaces ; 14(42): 47882-47891, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36239388

RESUMO

Superatom-based superionic conductors are of current interest due to their promising applications in solid-state electrolytes for rechargeable batteries. However, much less attention has been paid to their thermal properties, which are vital for safety and performance. Motivated by the recent synthesis of superatom-based superionic conductor Na3OBH4 consisting of superhalogen cluster BH4, we systematically investigate its lattice dynamics and thermal conductivity using the density functional theory combined with a self-consistent phonon approach. We reveal the bonding hierarchy features by studying the electron localization function and potential energy surface and further unveil the rattling effect of the BH4 superatom, which introduces strong quartic anharmonicity and induces soft phonon modes in low temperatures by assisting Na displacements, thus calling for the necessity of quartic renormalization and four-phonon scattering in calculating the lattice thermal conductivity. We find that the contribution of four-phonon processes to the lattice thermal conductivity increases from 13 to 32% when the temperature rises from 200 to 400 K. At room temperature (300 K), the phonon scattering phase space is enlarged by 133% due to the four-phonon interactions, and the lattice thermal conductivity is evaluated to be 5.34 W/mK, reduced by 24% as compared with a value of 6.99 W/mK involving three-phonon scattering only. These findings provide a better understanding of the lattice stability and thermal transport properties of superionic conductor Na3OBH4, shedding light on the role of strong quartic anharmonicity played in superatom-based materials.

4.
ACS Appl Mater Interfaces ; 14(28): 32043-32055, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35816506

RESUMO

Na-ion batteries (NIBs) capture intensive research interest in large-scale energy storage applications because of sodium's abundant resources and low cost. However, the low capacity, poor conductivity, and short cycle life of the commonly used anodes are the main challenges in developing advanced NIBs. Here, stimulated by the recent successful synthesis of biphenylene [Science 2021, 372, 852], we show that these problems can be curbed by assembling armchair biphenylene nanoribbons of different widths into three-dimensional architectures, which lead to homogeneously distributed nanopores with robust structural and mechanical stability. Through density functional theory and molecular dynamics calculations combined with the tight-binding model, we find that the assembled 3D biphenylene structures are metallic and thermally stable up to 2500 K, where the metallicity is further identified to originate from the pz-orbitals (π-bonds) of the sp2 carbon atoms. Especially, the optimal assembled structures HexC28 (HexC46) deliver a gravimetric capacity of 956 (1165) mA h g-1 and a volumetric capacity of 1109 (874) mA h mL-1, which are much higher than those of graphite and hard carbon anodes. Moreover, they also show a suitable average potential, negligible volume change, and low diffusion energy barrier. These findings demonstrate that assembling biphenylene nanoribbons is a promising strategy for designing next-generation NIB anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA