Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 657: 240-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38039884

RESUMO

An electrocatalyst of single-atomic Mn sites with MnP nanoparticles (NPs) on N, P co-doped carbon substrate was constructed to enhance the catalytic activity of oxygen reduction reaction (ORR) through one-pot in situ doping-phosphatization strategy. The optimized MnSA-MnP-980℃ catalyst exhibits an excellent ORR activity in KOH electrolyte with a half-wave potential (E1/2) of 0.88 V (vs. RHE), and the ORR current density of MnSA-MnP-980℃ maintained 97.9 % for over 25000 s chronoamperometric i-t measurement. When using as the cathode, the MnSA-MnP-980℃ displays a peak power density of 51 mW cm-2 in Zinc-Air batteries, which observably outperformed commercial Pt/C (20 wt%). The X-ray photoelectron spectroscopy reveal that the doped P atoms with a strong electron-donating effectively enhances electron cloud density of Mn SAs sites, facilitating the adsorption of O2 molecules. Meanwhile, the introduction of MnP NPs can regulate the electronic structure of Mn SAs sites, making Mn SAs active sites exist in a low oxidation state and are less positively charged, which can supply electrons for ORR process to narrow the adsorption energy barrier of ORR intermediates. This work constructs novel active sites with excellent ORR properties and provides valuable reference for the development of practical application.

2.
ACS Appl Mater Interfaces ; 15(5): 7578-7591, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716404

RESUMO

The effective integration of multiple functions into electromagnetic wave-absorbing (EWA) materials is the future development direction but remains a huge challenge. A rational selection of components and the design of structures can make the material have excellent EWA performance and heat dissipation. Herein, the core-shell structured boron nitride@nitrogen-doped carbon (BN@NC) is prepared by using waterborne polyurethane (WPU) as the carbon source via a facile pyrolysis treatment process, where NC is used as the conductive loss shell, and BN serves as an impedance matching core and dominant heat transfer media. As a result, the BN@NC-900 filled with paraffin wax yields a minimum reflection loss of -42.2 dB at 2.2 mm and an effective absorbing bandwidth of 4.48 GHz at 1.8 mm, and its thermal conductivity reaches up to 0.92 W/m·K in epoxy resin. Most importantly, flexible BN@NC/WPU films are prepared and simultaneously achieve the dual-functional capability of efficiently dissipating heat and electromagnetic waves (-50.0 dB). Besides, an attractive multiband absorption feature (>99%) from C to Ku bands is realized and a strong absorbing over -27.0 dB at the S band (2.88 GHz) is even achieved. This study may pave a new route for the rational design of multifunctional EWA materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...