Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401954, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733233

RESUMO

Achiral solvents are commonly utilized to induce the self-assembly of chiral molecules. This study demonstrates that achiral solvents can trigger helicity inversion in the assemblies of dansyl amphiphiles and control the excited-state "majority rule" in assemblies composed of pure enantiomers, through variation of the cosolvent ratio. Specifically, enantiomers of dansyl amphiphiles self-assemble into helical structures with opposite handedness in methanol (MeOH) and acetonitrile (MeCN), together with inversed circular dichroism and circularly polarized luminescence (CPL) signals. When a mixture of MeOH and MeCN is employed, the achiral cosolvents collectively affect the CPL of the assemblies in a way similar to that of "mixed enantiomers". The dominant cosolvent governs the CPL signal. As the cosolvent composition shifts from pure MeCN to MeOH, the CPL signals undergo a significant inversion and amplification, with two maxima observed at ≈20% MeOH and 20% MeCN. This study deepens the comprehension of how achiral solvents modulate helical nanostructures and their excited-state chiroptical properties.

2.
Angew Chem Int Ed Engl ; 63(6): e202316863, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38116831

RESUMO

Pathway-dependent self-assembly, in which a single building block forms two or more types of self-assembled nanostructures, is an important topic due to its mimic to the complexity in biology and manipulation of diverse supramolecular materials. Here, we report a pathway-dependent self-assembly using chiral glutamide derivatives (L or D-PAG), which form chiral nanotwist and nanotube through a cooperative slow cooling and an isodesmic fast cooling process, respectively. Furthermore, pathway-dependent self-assembly can be harnessed to control over the supramolecular co-assembly of PAG with a luminophore ß-DCS or a photopolymerizable PCDA. Fast cooling leads to the co-assembled PAG/ß-DCS nanotube exhibiting green circularly polarized luminescence (CPL), while slow cooling to nanofiber with blue CPL. Additionally, fast cooling process promotes the photopolymerization of PCDA into a red chiral polymer, whereas slow cooling inhibits the polymerization. This work not only demonstrates the pathway-dependent control over structural characteristics but also highlights the diverse functions emerged from the different assemblies.

3.
Angew Chem Int Ed Engl ; 62(46): e202311816, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37743623

RESUMO

Herein, chiral deep eutectic solvents (DES) are prepared by lauric acid as hydrogen bond donors (HBD) and chiral menthol as hydrogen bond acceptors (HBA). When achiral fluorescent molecules are dopedin the menthol-based chiral DES, they emit circularly polarized luminescence (CPL) with handedness controlled by the molecular chirality (l or d) of menthol. Remarkably, the strategy is universal and a series of achiral fluorescent molecules can be endowed with CPL activity, showing a full-color and white CPL upon appropriate mixing, which paves the way to prepare white CPL materials. Interestingly, CPL appears only in a certain temperature range in the DES. Variable-temperature spectra and other characterization methods reveal that the H-bond network in the chiral DES plays an important role in inducing CPL. This work unveils how the interior structure as well as the hydrogen-bond network of a chiral DES can transfer its chirality to achiral luminophores for the first time and realizes a full-color and white CPL in a DES.

4.
Chem Commun (Camb) ; 59(14): 1999-2002, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723065

RESUMO

Although the individual VB2 cannot form gels in water, it could form a two-component hydrogel with adenine (A) through the intermolecular π-π stacking and hydrogen bonding between VB2 and A, while other nucleobases, including thymine (T), guanine (G), cytosine (C) and uracil (U), could not. The chiral information of VB2 was amplified in the co-assembly of VB2 and A, which was revealed by the enhanced circular dichroism (CD) and circularly polarized luminescence (CPL). Moreover, due to the different interaction modes between VB2 and A in 1 : 1 and 1 : 2 molar ratio, a reversion of the CPL signal was observed. This work demonstrated how biological molecules could be fabricated into functional materials using the specific interactions within the biological molecules.


Assuntos
Adenina , Luminescência , Riboflavina , Timina , Uracila
5.
ACS Appl Mater Interfaces ; 13(13): 15501-15508, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764753

RESUMO

While the tremendous deal of efforts has been dedicated to the design and fabrication of materials with circularly polarized luminescence (CPL), the development of the chiroptical switch between different CPL signals is one of the important routes toward its application. Here, we prepared a supramolecular gel from the coassemblies containing a chiral gelator (9-fluoren-methoxycarbonyl-functionalized glutamate derivatives, FLG), a fluorescent molecule [(rhodamine B, RhB) or (2',7'-dichlorofluorescein sodium salt, DCF)], and a photochromic molecule [1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene, DAE], thus constructing photomodulated switchable CPL soft materials. It was found that FLG could form supramolecular gel in ethanol and self-assemble into left-handed twisted nanostructures. During the formation of a co-gel with RhB (or DCF) and DAE, the chirality of FLG could be effectively transferred to both the fluorescent and photochromic components, which induced them with chiroptical properties including CPL and circular dichroism (CD). DAE undergoes a reversible transition between the achromatous open state and the dark purple closed state in the co-gel under alternating irradiation with UV and visible light. During such a process, an intermolecular Förster resonance energy transfer (FRET) behavior from fluorescent RhB to ring-closed DAE caused the emission quenching of RhB, which led to CPL silence of RhB in the co-gel. Subsequent irradiation with visible light caused the restoration of the emission and CPL activity with the restored open state. These changes could be repeated many times upon alternate UV and visible irradiation. Therefore, a reversible CPL switch was fabricated in supramolecular gels through the photomodulated FRET process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...