Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(1): 114-122, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799384

RESUMO

Xylem is the main tissue for water transport in plants, and the changes of hydraulic properties in which would affect plant water relations and fruit water accumulation. It remains unclear regarding the responses of xylem anatomy and hydraulic properties to water and salt stresses in tomato plants and their relationships with plant growth and fruit water content. We conducted a pot experiment in a greenhouse to investigate the responses of plant growth, fruit water content, and xylem hydraulic properties of a cherry tomato (Hong Baoshi) and a medium-fruited tomato (Beifan 501). There were three treatments, control with a soil water content (θ) of 75%-95% of field capacity (FC) and an initial electrical conductivity (EC) of 0.398 dS·m-1; water stress with θ of 75%-95% of FC (before flowering) and 45%-65% of FC (from flowering until maturity) and an EC of 0.398 dS·m-1; and salt stress with θ of 75%-95% of FC and an EC of 1.680 dS·m-1. Results showed that water and salt stresses decreased the cross-sectional stem area and xylem vessel diameter by 22.0%-40.7% and 10.0%-18.3%, respectively, and reduced the specific hydraulic conductivity of stem and the hydraulic conductivity of peduncle by 8.8%-41.1% and 12.9%-28.4%, respectively. Those changes inhibited plant growth and reduced aboveground fresh weight, fruit size, fresh weight and water content, with a more pronounced negative effect in the medium-fruited tomato. More-over, fruit water content was positively correlated with the specific hydraulic conductivity of stem and peduncle. In conclusion, water and salt stresses would inhibit plant growht, fruit fresh weight, and consequently tomato yield, due to their negative effects on xylem hydraulic properties of the tomato plant. Medium-fruited tomatoes are more susceptible to water and salt stresses than cherry tomatoes.


Assuntos
Solanum lycopersicum , Estudos Transversais , Xilema/fisiologia , Solo , Estresse Salino , Folhas de Planta/fisiologia
2.
Ying Yong Sheng Tai Xue Bao ; 19(2): 299-305, 2008 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-18464634

RESUMO

This paper studied the stem sap flow of grape in arid oasis region of Shiyang River basin under conventional drip irrigation (CDI), alternate drip irrigation (ADI), and fixed drip irrigation (FDI), and its relationships with meteorological conditions and soil moisture content. The results showed that the stem sap flow of grape had an obvious day-night rhythm synchronous with solar radiation, and was significantly higher under CDI than under ADI and FDI during new branch growth and flowering stages. Solar radiation and air temperature were the main meteorological factors affecting the hourly sap flow, and the daily stem sap flow had linear relationships with daily air temperature and wind speed. The correlation coefficients between the stem sap flow and the meteorological factors ranked in the order of CDI > ADI > FDI. There was a significant correlation between daily stem sap flow and reference crop evapotranspiration (ET0). Compared with CDI, ADI could save 50% of irrigation water while the stem sap flow only reduced by 6.56%, and an obvious compensation effect between stem sap flow and hydraulic conductivity was observed.


Assuntos
Clima Desértico , Caules de Planta/metabolismo , Vitis/metabolismo , Água/metabolismo , Agricultura/métodos , China , Meio Ambiente , Transpiração Vegetal , Rios , Movimentos da Água
3.
Ying Yong Sheng Tai Xue Bao ; 18(6): 1194-202, 2007 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-17763715

RESUMO

By using heat pulse technique, an investigation on the transpiration of Hedysarum scoparium was conducted in the arid desert region of Shiyang River basin, Gansu Province. The results indicated that with increasing inserted depth of probe, the sap flow velocity in H. scoparium xylem had a trend from high to low. In the taproot with smaller diameter, the average sap flow velocity at different positions was faster, and the change range was bigger. Among the taproots with different diameters, there existed a larger difference in the magnitude of sap flux, but the change trend was similar, i. e., smaller at nighttime and larger at daytime, and showing a multi-peak curve. A linear correlation was observed between the diurnal sap flux and the reference crop evapotranspiration, and the transpiration mainly occurred during the period from June to September, occupying 79.04% of the total annual transpiration. The diurnal sap flux of H. scoparium at its later growth period had significant correlation with the moisture content in 0-50 cm sand layer, but no correlations with that in other sand layers. The effects of main meteorological factors on the sap flux of H. scoparium were in the sequence of air temperature > vapor pressure difference > wind speed.


Assuntos
Clima Desértico , Fabaceae/fisiologia , Transpiração Vegetal/fisiologia , China , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...