Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(6): e1010626, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727817

RESUMO

From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.


Assuntos
Carpas , Doenças dos Peixes , Herpesviridae , Animais , Antivirais/farmacologia , Autofagia , Feminino , Imunidade Inata/genética , Masculino , Mamíferos , Peixe-Zebra/genética
2.
PLoS Genet ; 18(6): e1010288, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767574

RESUMO

Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.


Assuntos
Gônadas , Diferenciação Sexual , Animais , Diferenciação Celular/genética , Feminino , Proteínas de Peixes/genética , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Poliploidia , Diferenciação Sexual/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
PLoS Genet ; 17(9): e1009760, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491994

RESUMO

Unisexual taxa are commonly considered short-lived as the absence of meiotic recombination is supposed to accumulate deleterious mutations and hinder the creation of genetic diversity. However, the gynogenetic gibel carp (Carassius gibelio) with high genetic diversity and wide ecological distribution has outlived its predicted extinction time of a strict unisexual reproduction population. Unlike other unisexual vertebrates, males associated with supernumerary microchromosomes have been observed in gibel carp, which provides a unique system to explore the rationales underlying male occurrence in unisexual lineage and evolution of unisexual reproduction. Here, we identified a massively expanded satellite DNA cluster on microchromosomes of hexaploid gibel carp via comparing with the ancestral tetraploid crucian carp (Carassius auratus). Based on the satellite cluster, we developed a method for single chromosomal fluorescence microdissection and isolated three male-specific microchromosomes in a male metaphase cell. Genomic anatomy revealed that these male-specific microchromosomes contained homologous sequences of autosomes and abundant repetitive elements. Significantly, several potential male-specific genes with transcriptional activity were identified, among which four and five genes displayed male-specific and male-biased expression in gonads, respectively, during the developmental period of sex determination. Therefore, the male-specific microchromosomes resembling common features of sex chromosomes may be the main driving force for male occurrence in gynogenetic gibel carp, which sheds new light on the evolution of unisexual reproduction.


Assuntos
Carpas/genética , Cromossomos , Genoma , Animais , Gônadas/metabolismo , Masculino , Reprodução/genética
4.
Front Genet ; 12: 691923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122529

RESUMO

Unisexual lineages are commonly considered to be short-lived in the evolutionary process as accumulation of deleterious mutations stated by Muller's ratchet. However, the gynogenetic hexaploid gibel carp (Carassius gibelio) with existence over 0.5 million years has wider ecological distribution and higher genetic diversity than its sexual progenitors, which provides an ideal model to investigate the underlying mechanisms on countering Muller's ratchet in unisexual taxa. Unlike other unisexual lineages, the wild populations of gibel carp contain rare and variable proportions of males (1-26%), which are determined via two strategies including genotypic sex determination and temperature-dependent sex determination. Here, we used a maternal gibel carp from strain F to be mated with a genotypic male from strain A+, a temperature-dependent male from strain A+, and a male from another species common carp (Cyprinus carpio), respectively. When the maternal individual was mated with the genotypic male, a variant of gynogenesis was initiated, along with male occurrence, accumulation of microchromosomes, and creation of genetic diversity in the offspring. When the maternal individual was mated with the temperature-dependent male and common carp, typical gynogenesis was initiated that all the offspring showed the same genetic information as the maternal individual. Subsequently, we found out that the genotypic male nucleus swelled and contacted with the female nucleus after fertilization although it was extruded from the female nucleus eventually, which might be associated with the genetic variation in the offspring. These results reveal that genotypic males play an important role in the creation of genetic diversity in gynogenetic gibel carp, which provides insights into the evolution of unisexual reproduction.

5.
BMC Genomics ; 22(1): 328, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952209

RESUMO

BACKGROUND: Fatty liver has become a main problem that causes huge economic losses in many aquaculture modes. It is a common physiological or pathological phenomenon in aquaculture, but the causes and occurring mechanism are remaining enigmatic. METHODS: Each three liver samples from the control group of allogynogenetic gibel carp with normal liver and the overfeeding group with fatty liver were collected randomly for the detailed comparison of histological structure, lipid accumulation, transcriptomic profile, latent pathway identification analysis (LPIA), marker gene expression, and hepatocyte mitochondria analyses. RESULTS: Compared to normal liver, larger hepatocytes and more lipid accumulation were observed in fatty liver. Transcriptomic analysis between fatty liver and normal liver showed a totally different transcriptional trajectory. GO terms and KEGG pathways analyses revealed several enriched pathways in fatty liver, such as lipid biosynthesis, degradation accumulation, peroxidation, or metabolism and redox balance activities. LPIA identified an activated ferroptosis pathway in the fatty liver. qPCR analysis confirmed that gpx4, a negative regulator of ferroptosis, was significantly downregulated while the other three positively regulated marker genes, such as acsl4, tfr1 and gcl, were upregulated in fatty liver. Moreover, the hepatocytes of fatty liver had more condensed mitochondria and some of their outer membranes were almost ruptured. CONCLUSIONS: We reveal an association between ferroptosis and fish fatty liver for the first time, suggesting that ferroptosis might be activated in liver fatty. Therefore, the current study provides a clue for future studies on fish fatty liver problems.


Assuntos
Carpas , Fígado Gorduroso , Ferroptose , Animais , Fígado Gorduroso/genética , Transcriptoma
6.
Sci China Life Sci ; 64(1): 77-87, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32529288

RESUMO

Polyploids in vertebrates are generally associated with unisexual reproduction, but the direct consequences of polyploidy on sex determination system and reproduction mode remain unknown. Here, we synthesized a group of artificial octoploids between unisexual gynogenetic hexaploid Carassius gibelio and sexual tetraploid Carassius auratus. The synthetic octoploids were revealed to have more than 200 chromosomes, in which 50 chromosomes including the X/Y sex determination system were identified to transfer from sexual tetraploid C. auratus into the unisexual gynogenetic hexaploid C. gibelio. Significantly, a few synthetic octoploid males were found to be fertile, and one octoploid male was confirmed to regain sexual reproduction ability, which exhibits characteristics that are the same to sexual reproduction tetraploid males, such as 1:1 sex ratio occurrence, meiosis completion and euploid sperm formation in spermatogenesis, as well as normal embryo development and gene expression pattern during embryogenesis. Therefore, the current finding provides a unique case to explore the effect of sex determination system incorporation on reproduction mode transition from unisexual gynogenesis to sexual reproduction along with genome synthesis of recurrent polyploidy in vertebrates.


Assuntos
Carpas/genética , Genoma/genética , Carpa Dourada/genética , Poliploidia , Animais , Cromossomos/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , Masculino , Meiose/genética , Reprodução/genética , Processos de Determinação Sexual/genética , Razão de Masculinidade , Espermatogênese/genética , Espermatozoides/metabolismo
7.
Nanomaterials (Basel) ; 10(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272556

RESUMO

We report the fabrication of stretchable sensor films (SSF) using a composite of functionalized polypyrrole- single-walled carbon nanotube (SWCNT)-silver nanowire hybrid networks embedded into a cross-linked polydimethylsiloxane elastomer. The SSF exhibited low resistivity of 30 Ω/sq and an outstanding mechanical elasticity of up to 25% (no visible change in the sheet resistance after 100 cycle at stretching-release test of 25%). These SSFs were responsive to 1 ppm ammonia gas even at a low temperature of 40 °C with 20% relative humidity and also maintained reproducibility and reversibility when repeatedly exposed to ammonia gas more than 100 times. In addition, it was confirmed that the sensor film was hardly affected even at a relative humidity range of 20% to 80%.

8.
Nanomaterials (Basel) ; 9(4)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970563

RESUMO

We report the fabrication of stretchable transparent electrode films (STEF) using 15-nm-diameter Ag nanowires networks embedded into a cross-linked polydimethylsiloxane elastomer. 15-nm-diameter Ag NWs with a high aspect ratio (˃1000) were synthesized through pressure-induced polyol synthesis in the presence of AgCl particles with KBr. These Ag NW network-based STEF exhibited considerably low haze values (<1.5%) with a transparency of 90% despite the low sheet resistance of 20 Ω/sq. The STEF exhibited an outstanding mechanical elasticity of up to 20% and no visible change occurred in the sheet resistance after 100 cycles at a stretching-release test of 20%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...