Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38544123

RESUMO

Muscle strength is routinely measured in patients with neuromuscular disorders by hand-held dynamometry incorporating a wireless load cell to evaluate disease severity and therapeutic efficacy, with magnitude of effect often based on normative reference values. While several hand-held dynamometers exist, their interchangeability is unknown which limits the utility of normative data. We investigated the variability between six commercially available dynamometers for measuring the isometric muscle strength of four muscle groups in thirty healthy individuals. Following electro-mechanical sensor calibration against knowns loads, Citec, Nicholas, MicroFET2, and Commander dynamometers were used to assess the strength of ankle dorsiflexors, hip internal rotators, and shoulder external rotators. Citec, Jamar Plus, and Baseline Hydraulic dynamometers were used to capture hand grip strength. Variability between dynamometers was represented as percent differences and statistical significance was calculated with one-way repeated measures ANOVA. Percent differences between dynamometers ranged from 0.2% to 16%. No significant differences were recorded between the Citec, Nicholas, and MicroFET2 dynamometers (p > 0.05). Citec grip strength measures differed to the Jamar Plus and Baseline Hydraulic dynamometers (p < 0.01). However, when controlling for grip circumference, they were comparable (p > 0.05). Several hand-held dynamometers can be used interchangeably to measure upper and lower limb strength, thereby maximising the use of normative reference values.


Assuntos
Força da Mão , Força Muscular , Humanos , Força da Mão/fisiologia , Reprodutibilidade dos Testes , Força Muscular/fisiologia , Extremidade Superior , Ombro
2.
Research (Wash D C) ; 7: 0303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323094

RESUMO

Recent studies have highlighted the pivotal roles of circular RNAs (circRNAs) in cardiovascular diseases. Through high-throughput circRNA sequencing of both normal myocardial tissues and hypertrophic patients, we unveiled 32,034 previously undiscovered circRNAs with distinct cardiac expression patterns. Notably, circITGa9, a circRNA derived from integrin-α9, exhibited substantial up-regulation in cardiac hypertrophy patients. This elevation was validated across extensive sample pools from cardiac patients and donors. In vivo experiments revealed heightened cardiac fibrosis in mice subjected to transverse aortic constriction (TAC) after circITGa9 injection. We identified circITGa9 binding proteins through circRNA precipitation followed by liquid chromatography tandem-mass spectrometry. Furthermore, circRNA pull-down/precipitation assays demonstrated that increased circITGa9 expression facilitated binding with tropomyosin 3 (TPM3). Specific binding sites between circITGa9 and TPM3 were identified through computational algorithms and further validated by site-directed mutagenesis. We further showed that circITGa9 induced actin polymerization, characteristic of tissue fibrosis. Finally, we developed approaches that improved cardiac function and decreased fibrosis by delivering small interfering RNA targeting circITGa9 or blocking oligo inhibiting the interaction of circITGa9 and TPM3 into TAC mice, which is amenable for further preclinical and translational development. We conclude that elevated circITGa9 levels drive cardiac remodeling and fibrosis. By pinpointing circITGa9 as a therapeutic target, we open doors to innovative interventions for mitigating cardiac remodeling and fibrosis.

4.
Adv Sci (Weinh) ; 10(28): e2300425, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566765

RESUMO

Current studies on actin function primarily rely on cytoplasmic actin due to the absence of cellular models specifically expressing nuclear actin. Here, cell models capable of expressing varying levels of nuclear F/G-actin are generated and a significant role of nuclear actin in the regulation of epithelial-mesenchymal transition (EMT) is uncovered. Through immunoprecipitation and mass spectrometry analyses, distinct binding partners for nuclear F-actin (ß-catenin, SMAD2, and SMAD3) and nuclear G-actin (MYBBP1A, NKRF, and MYPOP) are investigated, which respectively modulate EMT-promoting and EMT-repressing transcriptional events. While nuclear F-actin promotes EMT with enhanced cell migration, survival, and elongated mesenchymal morphology, nuclear G-actin represses EMT and related cell activities. Mechanistically, nuclear F-actin enhances ß-catenin, SMAD2, and SMAD3 expression and stability in the nuclei, while nuclear G-actin increases MYBBP1A, NKRF, and MYPOP expression and stability in the nuclei. The association between nuclear F/G-actin and N-cadherin/E-cadherin in the cell lines (in vitro), and increased nuclear actin polymerization in the wound healing cells (in vivo) affirm a significant role of nuclear actin in EMT regulation. With evidence of nuclear actin polymerization and EMT during development, and irregularities in disease states such as cancer and fibrosis, targeting nuclear actin dynamics to trigger dysregulated EMT warrants ongoing study.

5.
Mol Ther ; 31(6): 1688-1704, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36245125

RESUMO

Circular RNAs (circRNAs) are a group of non-coding RNAs with a unique circular structure generated by back-splicing. It is acknowledged that circRNAs play critical roles in cardiovascular diseases. However, functional studies of circRNAs were impeded due to lack of effective in vivo silencing approaches. Since most circRNAs are produced by protein-coding transcripts, gene editing typically affects the coding activity of the parental genes. In this study, we developed a circular antisense RNA (cA-circSlc8a1) that could silence the highly expressed circRNA circSlc8a1 in the mouse heart but not its parental Slc8a1 linear mRNA. Transgenic cA-circSlc8a1 mice developed congestive heart failure resulting in a significant increase in the body weight secondary to peripheral edema and congestive hepatopathy. To further test the role of circSlc8a1, we generated transgenic mice overexpressing circSlc8a1 and observed a protective effect of circSlc8a1 in a pressure overload model. Mechanistically, we found that circSlc8a1 translocated into mitochondria to drive ATP synthesis. While establishing a transgenic murine model for antisense-mediated circRNA silencing without interfering with the parental linear RNA, our finding revealed the essential role of circSlc8a1 in maintaining heart function and may lay the groundwork of using the circular antisense RNA as a potential gene therapy approach for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , RNA Antissenso , RNA Circular , Trocador de Sódio e Cálcio , Animais , Camundongos , RNA Circular/genética , RNA Mensageiro , Trocador de Sódio e Cálcio/genética
6.
STAR Protoc ; 3(4): 101702, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36149796

RESUMO

Due to the unique structure of circular RNAs, it is challenging to use traditional pulldown approaches. Here, we describe the design and use of a probe that spans the back splicing junction (BSJ), enabling interaction with circular RNAs. The probe repeats four times, allowing efficient and specific pulldown of circular RNAs and their binding partners. This protocol describes the steps for mouse cardiac fibroblast (MCF) cells; we have also verified the protocol in other cell types. For complete details on the use and execution of this protocol, please refer to Wu et al. (2021).


Assuntos
RNA Circular , RNA , Camundongos , Animais , RNA/metabolismo , Splicing de RNA , Linhagem Celular , Proteínas de Ligação a RNA/metabolismo
7.
Mol Ther Nucleic Acids ; 28: 175-189, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35402068

RESUMO

Doxorubicin is a chemotherapeutic medication commonly used to treat many types of cancers, but it has side effects including vomiting, rash, hair loss, and bone marrow suppression. The most dangerous side effects are cardiomyopathy, cardiofibrosis, and heart failure, as doxorubicin generates cytotoxicity and stops DNA replication. There is no treatment to block these side effects. We have developed a transgenic mouse line overexpressing the circular RNA circNlgn and shown that circNlgn is a mediator of doxorubicin-induced cardiofibrosis. Increased expression of circNlgn decreased cardiac function and induced cardiofibrosis by upregulating Gadd45b, Sema4C, and RAD50 and activating p38 and pJNK in circNlgn transgenic heart. Silencing circNlgn decreased the effects of doxorubicin on cardiac cell activities and prevented doxorubicin-induced expression of fibrosis-associated molecules. The protein (Nlgn173) translated by circNlgn could bind and activate H2AX, producing γH2AX, resulting in upregulation of IL-1b, IL-2Rb, IL-6, EGR1, and EGR3. We showed that silencing these molecules in the signaling pathway prevented doxorubicin-induced cardiomyocyte apoptosis, increased cardiomyocyte viability, decreased cardiac fibroblast proliferation, and inhibited collagen production. This mechanism may hold therapeutic implications for mitigating the side effects of doxorubicin therapy in cancer patients.

8.
Mol Ther Nucleic Acids ; 27: 276-292, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35024241

RESUMO

We performed in vitro and in vivo experiments to investigate the role of the circular RNA circSKA3 in tumor development. We examined the effects of circSKA3 on mediating breast cancer metastasis. In vitro, we found that the circular RNA circSKA3 was transferred between breast cancer cells, which were decreased by inhibiting exosome secretion. In vivo, circSKA3-containing exosomes potentiated tumor development and invasion that were inhibited by blocking exosome transmission. The ascites isolated from tumor-bearing mice or breast cancer patients showed high levels of circSKA3 and integrin ß1. Single-cell culture and single-cell PCR showed that circSKA3 was heterogeneously expressed, the cells expressing higher levels of circSKA3 had a higher potential to form large colonies. This property was similar to c-myc, but circSKA3 expression had no correlation with c-myc levels. The effects of circSKA3 on cell migration and invasion appeared to predominate c-myc functions. By releasing circSKA3-containing exosomes to cancer cells expressing lower levels of circSKA3, the large colonies could regulate the activities of small colonies, enhancing the tumor-forming capacity of the entire population. Thus, we provide evidence that the transmission of circular RNAs in tumor-derived exosomes may allow for the maintenance of advantageous invasive sub-clones in breast cancer.

9.
Mol Ther ; 29(9): 2754-2768, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34365033

RESUMO

Circular RNAs (circRNAs) represent a large group of non-coding RNAs that are widely detected in mammalian cells. Although most circRNAs are generated in a sense orientation, there is a group of circRNAs that are synthesized in an antisense orientation. High-throughput analysis of breast cancer specimens revealed a significant enrichment of 209 antisense circRNAs. The tumor suppressor SCRIB was shown to potentially produce thirteen circRNAs, three of which are in an antisense orientation. Among these three circRNAs, circSCRIB (hsa_circ_0001831) was the most enriched in the breast cancer panel. This antisense SCRIB circRNA was shown to span one intron and two exons. We hypothesized that this circRNA could decrease pre-mRNA splicing and mRNA translation. To test this, we generated a hsa_circ_0001831 expression construct. We found that there was decreased SCRIB mRNA production but increased cancer cell proliferation, migration, and invasion. In comparison, an exonic sequence construct did not affect mRNA splicing but decreased protein translation, leading to increased E-cadherin expression and decreased expression of N-cadherin and vimentin. Thus, there was increased cell migration, invasion, proliferation, colony formation, and tumorigenesis. Our study suggests a novel modulatory role of antisense circRNAs on their parental transcripts. This may represent a promising approach for developing circRNA-directed therapy.


Assuntos
Neoplasias da Mama/patologia , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana/genética , RNA Circular/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Splicing de RNA , RNA Antissenso/genética , Análise de Sequência de RNA
11.
Mol Ther Nucleic Acids ; 23: 1243-1257, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33717646

RESUMO

Circular RNAs (circRNAs) are a type of endogenous non-coding RNA that were discovered to regulate gene expression through multiple pathways. Metastasis remains one of the biggest obstacles in cancer treatment. In this review, we focus on circRNAs involved in cancer tumorigenesis and metastasis. We present recently identified tumor-related circRNAs and discuss their functioning in tumor progression and metastasis. These circRNAs are categorized into different functional mechanisms, including microRNA (miRNA) sponging, protein binding, regulation of host genes, translation of circRNAs, and exosomal circRNAs. Additionally, the indirect functions of circRNAs that regulate epithelial-mesenchymal transition and autophagy are also discussed.

12.
Mol Ther ; 29(3): 1138-1150, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279723

RESUMO

Cardiac fibrosis is a common pathological feature of cardiac hypertrophy. This study was designed to investigate a novel function of Yes-associated protein (YAP) circular RNA, circYap, in modulating cardiac fibrosis and the underlying mechanisms. By circular RNA sequencing, we found that three out of fifteen reported circYap isoforms were expressed in nine human heart tissues, with the isoform hsa_circ_0002320 being the highest. The levels of this isoform in the hearts of patients with cardiac hypertrophy were found to be significantly decreased. In the pressure overload mouse model, the levels of circYap were reduced in mouse hearts with transverse aortic constriction (TAC). Upon circYap plasmid injection, the cardiac fibrosis was attenuated, and the heart function was improved along with the elevation of cardiac circYap levels in TAC mice. Tropomyosin-4 (TMP4) and gamma-actin (ACTG) were identified to bind with circYap in cardiac cells and mouse heart tissues. Such bindings led to an increased TPM4 interaction with ACTG, resulting in the inhibition of actin polymerization and the following fibrosis. Collectively, our study uncovered a novel molecule that could regulate cardiac remodeling during cardiac fibrosis and implicated a new function of circular RNA. This process may be targeted for future cardio-therapy.


Assuntos
Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibrose/prevenção & controle , Miócitos Cardíacos/metabolismo , RNA Circular/genética , Fatores de Transcrição/metabolismo , Tropomiosina/metabolismo , Actinas/genética , Animais , Proteínas de Ciclo Celular/genética , Fibrose/genética , Fibrose/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Polimerização , Fatores de Transcrição/genética , Tropomiosina/genética , Remodelação Ventricular
13.
Mol Ther Nucleic Acids ; 21: 568-576, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32721877

RESUMO

Circular RNAs (circRNAs) are circularized, single-stranded RNAs that are covalently linked. With their abundance in tissues and developmental stage-specific expression, circRNAs participate in a variety of physiological and pathological processes. In this review, we discuss the development of circRNAs used as biomarkers and therapeutic targets for cardiovascular diseases (CVDs), focusing on recent discoveries and applications of exosomal circRNAs that highlight opportunities and challenges. Some studies have identified a spectrum of circRNAs that are differentially expressed in CVDs, while other studies further manipulated specific circRNA expression and showed an ameliorated pathogenic state such as ischemic injury, hypertrophy, and cardiac fibrosis. Studies and applications of circRNAs are being rapidly developed. We expect to see clinical use of circRNAs as biomarkers and targets for disease treatment in the near future.

14.
Mol Ther ; 28(5): 1287-1298, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32229309

RESUMO

Metastatic cancer cells invade surrounding tissues by forming dynamic actin-based invadopodia, which degrade the surrounding extracellular matrix and allow cancer cell invasion. Regulatory RNAs, including circular RNA, have been implicated in this process. By microarray, we found that the circular RNA circSKA3 was highly expressed in breast cancer cells and human breast cancer tissues. We further found that the invasive capacity of breast cancer cells was positively correlated with circSKA3 expression, through the formation of invadopodia. Mechanistically, we identified Tks5 and integrin ß1 as circSKA3 binding partners in these tumor-derived invadopodia. Ectopic circSKA3 expression conferred increased tumor invasiveness in vitro and in vivo. We further identified the RNA-protein binding sites between circSKA3, Tks5 and integrin ß1. In tumor formation assays, we found that circSKA3 expression promoted tumor progression and invadopodium formation. Mutation of the circSKA3 binding sites or transfection with blocking oligos abrogated the observed effects. Thus, we provide evidence that the circular RNA circSKA3 promotes tumor progression by complexing with Tks5 and integrin ß1, inducing invadopodium formation.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Integrina beta1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Podossomos/metabolismo , RNA Circular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Progressão da Doença , Feminino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/genética , Invasividade Neoplásica/genética , Projetos Piloto , Ligação Proteica/genética , RNA Circular/genética , Transfecção
15.
Clin J Sport Med ; 30(5): 513-517, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30418199

RESUMO

This article presents a brief, focused physical examination [PE, the Buffalo Concussion Physical Examination (BCPE)] for sport-related concussion (SRC) to be considered for use in the outpatient setting by sports medicine physicians, pediatricians, and primary-care physicians. This companion paper describes how to perform the PE, which was derived in a separate study presented in this journal. It is envisioned for use at the initial and follow-up outpatient visits both for acute concussions and in patients with prolonged symptoms. A pertinent PE, combined with other assessments, can help identify specific treatment targets in those with persistent symptoms after SRC. The BCPE includes orthostatic vital signs and examinations of the cranial nerves, oculomotor/ophthalmologic, cervical, and vestibular systems. Supplementary tests, including testing for exercise tolerance and neurocognitive function, may be performed if indicated. It is recommended that a PE be performed at the initial visit and every 1 to 2 weeks after SRC. On return of symptoms, cognition, and the PE to baseline, as well as normalization of any supplementary tests, patients can begin a return to play program.


Assuntos
Assistência Ambulatorial , Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Exame Físico/métodos , Traumatismos em Atletas/classificação , Concussão Encefálica/classificação , Cognição/fisiologia , Tolerância ao Exercício , Humanos , Exame Neurológico/métodos , Testes Neuropsicológicos , Avaliação de Sintomas/métodos , Sinais Vitais
16.
Aging (Albany NY) ; 11(23): 11369-11381, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819016

RESUMO

Chemoresistance of triple negative breast cancer against paclitaxel (PAX) is one of the major issues for the patients under chemotherapy. However, the mechanism by which the breast cancer cells are resistant to PAX remains unclear. Here, we identified a circular RNA of angiomotin-like 1 (circAMOTL1) as an important player which may be responsible for the adverse resistance against PAX in breast cancer cells. The circAMOTL1 were overexpressed in MDA-MB-231 breast cancer cells via transfection of circAMOTL1 construct. Overexpression of circAMOTL1 caused significant increase of cell viability, reduction of apoptosis, and enhancement of invasion when MDA-MB-231 cells were exposed to PAX compared to those cells with vector control. Moreover, these resistant effects could be blocked by the application of circAMOTL1 siRNA. In these circAMOTL1 overexpressing cells, we found notable increase of both phosphorylated and total AKT protein, which suggested that AKT might be the downstream factor mediating the resistant effects. Consequently, the gene and protein expression of AKT related pro-apoptotic (BAX and BAK) and anti-apoptotic (BCL-2) factors were significantly changed by circAMOTL1 as well. These results suggest circAMOTL1 may play an important role in the PAX resistance of breast cancer cells via regulation of AKT pathway, facilitation of anti-apoptotic protein and inhibition of pro-apoptotic protein. While providing a new mechanism of PAX resistance in breast cancer cells, our findings may lay groundwork for a novel therapeutic target of the breast cancer treatment in the future.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Processamento Pós-Transcricional do RNA , RNA Circular/genética
17.
Cancer Lett ; 459: 216-226, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199987

RESUMO

Circular RNAs represent a large class of non-coding RNAs that are extensively expressed in mammals. However, the functions of circular RNAs are largely unknown. We recently reported that the circular RNA circ-Ccnb1 could bind with H2AX in p53 mutant cells and suppressed mutant p53 in tumor progression. Here we found that circ-Ccnb1 could interact with both Ccnb1 and Cdk1 proteins. Normally, Ccnb1 and Cdk1 proteins form a complex, allowing Ccnb1 to function as an all-or-none switch for cell mitosis. The interaction of circ-Ccnb1 with Ccnb1 and Cdk1 proteins dissociated the formation of Ccnb1-Cdk1 complex, by forming a large complex containing circ-Ccnb1, Ccnb1 and Cdk1. Formation of this large complex may occur in cytosol and nuclei, and Ccnb1 loses its roles in enhancing cell migration, invasion, proliferation and survival. In vivo, ectopic delivery of circ-Ccnb1 inhibited tumor growth and extended mouse viability. These results have added another layer of mechanisms for circ-Ccnb1 to regulate tumor progression in vitro and in vivo.


Assuntos
Neoplasias da Mama/terapia , Ciclina B1/genética , DNA Circular/administração & dosagem , Melanoma Experimental/terapia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína Quinase CDC2/metabolismo , Carcinogênese , Movimento Celular/fisiologia , Ciclina B1/metabolismo , DNA Circular/genética , Feminino , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Invasividade Neoplásica , Transdução de Sinais , Transfecção
18.
Cell Death Differ ; 26(12): 2758-2773, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31092884

RESUMO

Yap is the key component of Hippo pathway which plays crucial roles in tumorigenesis. Inhibition of Yap activity could promote apoptosis, suppress proliferation, and restrain metastasis of cancer cells. However, how Yap is regulated is not fully understood. Here, we reported Yap being negatively regulated by its circular RNA (circYap) through the suppression of the assembly of Yap translation initiation machinery. Overexpression of circYap in cancer cells significantly decreased Yap protein but did not affect its mRNA levels. As a consequence, it remarkably suppressed proliferation, migration and colony formation of the cells. We found that circYap could bind with Yap mRNA and the translation initiation associated proteins, eIF4G and PABP. The complex containing overexpressed circYap abolished the interaction of PABP on the poly(A) tail with eIF4G on the 5'-cap of the Yap mRNA, which functionally led to the suppression of Yap translation initiation. Individually blocking the binding sites of circYap on Yap mRNA or respectively mutating the binding sites for PABP and eIF4G derepressed Yap translation. Significantly, breast cancer tissue from patients in the study manifested dysregulation of circYap expression. Collectively, our study uncovered a novel molecular mechanism in the regulation of Yap and implicated a new function of circular RNA, supporting the pursuit of circYap as a potential tool for future cancer intervention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , RNA Circular/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Células Hep G2 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Biossíntese de Proteínas , RNA Circular/metabolismo , Fatores de Transcrição/metabolismo , Transfecção , Translocação Genética , Proteínas de Sinalização YAP
19.
Cancers (Basel) ; 10(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261584

RESUMO

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum's extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.

20.
Oncogene ; 37(44): 5829-5842, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29973691

RESUMO

Circular RNAs are a large group of noncoding RNAs that are widely expressed in mammalian cells. Genome-wide analyses have revealed abundant and evolutionarily conserved circular RNAs across species, which suggest specific physiological roles of these species. Using a microarray approach, we detected increased expression of a circular RNA circ-Dnmt1 in eight breast cancer cell lines and in patients with breast carcinoma. Silencing circ-Dnmt1 inhibited cell proliferation and survival. Ectopic circ-Dnmt1 increased the proliferative and survival capacities of breast cancer cells by stimulating cellular autophagy. We found that circ-Dnmt1-mediated autophagy was essential in inhibiting cellular senescence and increasing tumor xenograft growth. We further found that ectopically expressed circ-Dnmt1 could interact with both p53 and AUF1, promoting the nuclear translocation of both proteins. Nuclear translocation of p53 induced cellular autophagy while AUF1 nuclear translocation reduced Dnmt1 mRNA instability, resulting in increased Dnmt1 translation. From here, functional Dnmt1 could then translocate into the nucleus, inhibiting p53 transcription. Computational algorithms revealed that both p53 and AUF1 could bind to different regions of circ-Dnmt1 RNA. Our results showed that the highly expressed circular RNA circ-Dnmt1 could bind to and regulate oncogenic proteins in breast cancer cells. Thus circ-Dnmt1 appears to be an oncogenic circular RNA with potential for further preclinical research.


Assuntos
Autofagia/genética , Neoplasias da Mama/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , RNA/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Senescência Celular/genética , Senescência Celular/fisiologia , Progressão da Doença , Feminino , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Humanos , Camundongos , Camundongos Nus , RNA/genética , RNA/metabolismo , RNA Circular , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...