Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38664065

RESUMO

Mercury is a well-recognized environmental contaminant and neurotoxin, having been associated with a number of deleterious neurological conditions including neurodegenerative diseases, such as Alzheimer's disease. To investigate how mercury and other metals behave in the brain, we used synchrotron micro-X-ray fluorescence to map the distribution pattern and quantify concentrations of metals in human brain. Brain tissue was provided by the Rush Alzheimer's Disease Center and samples originated from individuals diagnosed with Alzheimer's disease and without cognitive impairment. Data were collected at the 2-ID-E beamline at the Advanced Photon Source at Argonne National Laboratory with an incident beam energy of 13 keV. Course scans were performed at low resolution to determine gross tissue features, after which smaller regions were selected to image at higher resolution. The findings revealed (1) the existence of mercury particles in the brain samples of two subjects; (2) co-localization and linear correlation of mercury and selenium in all particles; (3) co-localization of these particles with zinc structures; and (4) association with sulfur in some of these particles. These results suggest that selenium and sulfur may play protective roles against mercury in the brain, potentially binding with the metal to reduce the induced toxicity, although at different affinities. Our findings call for further studies to investigate the relationship between mercury, selenium, and sulfur, as well as the potential implications in Alzheimer's disease and related dementias.


Assuntos
Doença de Alzheimer , Encéfalo , Mercúrio , Selênio , Espectrometria por Raios X , Síncrotrons , Humanos , Mercúrio/análise , Mercúrio/metabolismo , Selênio/análise , Selênio/metabolismo , Encéfalo/metabolismo , Espectrometria por Raios X/métodos , Doença de Alzheimer/metabolismo , Idoso , Masculino , Feminino , Zinco/análise , Zinco/metabolismo
2.
FASEB J ; 38(1): e23317, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095240

RESUMO

Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder and is the most common etiological cause of dementia. Consequently, it has severe burden on its patients and on their caregivers and represents a global health concern. Clinical investigations have indicated that a dysregulation of peripheral T cell immune homeostasis may be involved in the pathogenesis of AD, as well as in the early stages of AD, characterized by mild cognitive impairment (MCI). However, the characteristics and concomitant feasibility of the use of T-cell receptor (TCR) typing for disease diagnosis remains largely unknown. We employed a high-throughput sequencing and multidimensional bioinformatics analyses for the identification of TCR repertoires present in peripheral blood samples of 10 patients with amnestic MCI (aMCI), 10 patients with AD, and 10 healthy controls (HCs). Based on the characteristics of the TCR repertoires in the amount and diversity of combinations of V-J, the spectrum of immune defense, and differentially expressed genes (DEGs), single and specific TCR profiles were observed in the patient samples of aMCI and AD compared to profiles of HCs. In particular, the diversity of TCR clonotypes manifested a pattern of "decreased first and then increased" pattern during the progression from aMCI to AD, a pattern that was not observed in HC samples. Additionally, a total of 46 and 35 amino acid CDR3 sequences with consistent and reverse expressive abundance with diversity of TCR clonotypes were identified, respectively. Taken together, we provide novel and essential preliminary evidence demonstrating the presence of diversity of T cell repertoires from differentially expressed V-J gene segments and amino acid clonotypes using peripheral blood samples from patients with AD, aMCI, and from HC. Such findings have the potential to reveal potential mechanisms through which aMCI progresses to AD and provide a reference for the future development of immune-related diagnoses and therapies for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Linfócitos T , Disfunção Cognitiva/diagnóstico , Receptores de Antígenos de Linfócitos T , Aminoácidos
3.
Fluids Barriers CNS ; 20(1): 32, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37122007

RESUMO

Lead (Pb) is a known environmental risk factor in the etiology of Alzheimer's disease (AD). The existing reports suggest that Pb exposure increases beta-amyloid (Aß) levels in brain tissues and cerebrospinal fluid (CSF) and facilitates the formation of amyloid plaques, which is a pathological hallmark for AD. Pb exposure has long been associated with cerebral vasculature injury. Yet it remained unclear if Pb exposure caused excessive Ab buildup in cerebral vasculature, which may damage the blood-brain barrier and cause abnormal Ab accumulation. This study was designed to investigate the impact of chronic Pb exposure on Aß accumulation in cerebral capillary and the expression of low-density lipoprotein receptor protein-1 (LRP1), a critical Aß transporter, in brain capillary and parenchyma. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aß40 was infused into the brain via the cannulated internal carotid artery. Data by ELISA showed a strikingly high affinity of Ab to cerebral vasculature, which was approximately 7-14 times higher than that to the parenchymal fractions collected from control brains. Pb exposure further aggravated the Aß accumulation in cerebral vasculature in a dose-dependent manner. Western blot analyses revealed that Pb exposure decreased LRP1 expression in cortical capillaries and hippocampal parenchyma. Immunohistochemistry (IHC) studies further revealed a disrupted distribution of LRP1 alongside hippocampal vasculature accompanied with a decreased expression in hippocampal neurons by Pb exposure. Taken together, the current study demonstrated that the cerebral vasculature naturally possessed a high affinity to Aß present in circulating blood. Pb exposure significantly increased Aß accumulation in cerebral vasculature; such an increased Aß accumulation was due partly to the diminished expression of LRP1 in response to Pb in tested brain regions. Perceivably, Pb-facilitated Ab aggravation in cerebral vasculature may contribute to Pb-associated amyloid alterations.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Chumbo , Animais , Ratos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Capilares/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Ratos Sprague-Dawley
4.
J Trace Elem Med Biol ; 77: 127146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871432

RESUMO

BACKGROUND: The iron concentration increases during normal brain development and is identified as a risk factor for many neurodegenerative diseases, it is vital to monitor iron content in the brain non-invasively. PURPOSE: This study aimed to quantify in vivo brain iron concentration with a 3D rosette-based ultra-short echo time (UTE) magnetic resonance imaging (MRI) sequence. METHODS: A cylindrical phantom containing nine vials of different iron concentrations (iron (II) chloride) from 0.5 millimoles to 50 millimoles and six healthy subjects were scanned using 3D high-resolution (0.94 ×0.94 ×0.94 mm3) rosette UTE sequence at an echo time (TE) of 20 µs. RESULTS: Iron-related hyperintense signals (i.e., positive contrast) were detected based on the phantom scan, and were used to establish an association between iron concentration and signal intensity. The signal intensities from in vivo scans were then converted to iron concentrations based on the association. The deep brain structures, such as the substantia nigra, putamen, and globus pallidus, were highlighted after the conversion, which indicated potential iron accumulations. CONCLUSION: This study suggested that T1-weighted signal intensity could be used for brain iron mapping.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Meios de Contraste
5.
Chemosphere ; 301: 134667, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35460676

RESUMO

A synergetic system of water falling film dielectric barrier discharge (DBD) plasma and persulfate (PS) was established and applied to enhance the enrofloxacin (EFA) degradation in this study. The simultaneous existence of electrons, reactive species, heat and UV-visible light in the DBD plasma system were utilized together to activate the PS to form SO4-· and other reactive oxygen species (ROS), and then worked in synergy with the DBD plasma to oxidize the EFA. The obtained results verified that there was a significant increase in the degradation percentages of EFA (20 mg L-1) in the DBD/PS system, and the trend was more obvious under the condition of larger discharge power input. When 0.8 mM PS was added into the DBD system with 0.8 kW discharge power, the degradation percentage of EFA could reach 99.35% after 60 min treatment, the corresponding synergetic factor (SF) was 7.94. Analysis of the O3 and the H2O2 concentrations in the DBD plasma system before and after the PS addition explained the activation of the PS by the HO·. The quenching experiments on reactive species suggested that SO4-·, HO·, and 1O2 were all important reactive species for EFA degradation. The intermediates formed by the EFA degradation were detected and the degradation pathways were speculated. Results of toxicity analysis illustrated that the toxicity of the initial EFA solution decreased after degradation in the synergetic system of DBD/PS.


Assuntos
Poluentes Químicos da Água , Água , Enrofloxacina/análise , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise
6.
Biology (Basel) ; 11(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35205174

RESUMO

Lead (Pb) is an environmental element that has been implicated in the development of dementia and Alzheimer's disease (AD). Additionally, innate immune activation contributes to AD pathophysiology. However, the mechanisms involved remain poorly understood. The choroid plexus (CP) is not only the site of cerebrospinal fluid (CSF) production, but also an important location for communication between the circulation and the CSF. In this study, we investigated the involvement of the CP during Pb exposure by evaluating the expression of the monocyte chemoattractant protein-1 (MCP-1). MCP-1 is highly expressed in the CP compared to other CNS tissues. MCP-1 regulates macrophage infiltration and is upregulated in AD brains. Our study revealed that Pb exposure stimulated MCP-1 expression, along with a significantly increased macrophage infiltration into the CP. By using cultured Z310 rat CP cells, Pb exposure stimulated MCP-1 expression in a dose-related fashion and markedly activated both NF-κB and p38 MAP kinase. Interestingly, both SB 203580, a p38 inhibitor, and BAY 11-7082, an NF-κB p65 inhibitor, significantly blocked Pb-induced MCP-1 expression. However, SB203580 did not directly inhibit NF-κB p65 phosphorylation. In conclusion, Pb exposure stimulates MCP-1 expression via the p38 and NF-κB p65 pathways along with macrophage infiltration into the CP.

7.
Neurotoxicology ; 88: 106-115, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793780

RESUMO

Lead (Pb) is a well-known neurotoxicant and environmental hazard. Recent experimental evidence has linked Pb exposure with neurological deterioration leading to neurodegenerative diseases, such as Alzheimer's disease. To understand brain regional distribution of Pb and its interaction with other metal ions, we used synchrotron micro-x-ray fluorescence technique (µ-XRF) to map the metal distribution pattern and to quantify metal concentrations in mouse brains. Lead-exposed mice received oral gavage of Pb acetate once daily for 4 weeks; the control mice received sodium acetate. Brain tissues were cut into slices and subjected for analysis. Synchrotron µ-XRF scans were run on the PETRA III P06 beamline (DESY). Coarse scans of the entire brain were performed to locate the cortex and hippocampus, after which scans with higher resolution were run in these areas. The results showed that: a) the total Pb intensity in Pb-exposed brain slices was significantly higher than in control brain; b) Pb typically deposited in localized particles of <10 um2 in both the Pb-exposed and control brain slices, with more of these particles in Pb-exposed samples; c) selenium (Se) was significantly correlated with Pb in these particles in the cortex and hippocampus/corpus callosum regions in the Pb-exposed samples, and the molar ratio of the Se and Pb in these particles is close to 1:1. These results indicated that Se may play a crucial role in Pb-induced neurotoxicity. Our findings call for further studies to investigate the relationship between Pb exposure and possible Se detoxification responses, and the implication in the etiology of Alzheimer's disease.


Assuntos
Química Encefálica/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Chumbo/metabolismo , Chumbo/análise , Selênio/análise , Animais , Chumbo/administração & dosagem , Masculino , Camundongos , Espectrometria por Raios X , Síncrotrons
8.
Neuroreport ; 32(1): 38-43, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33252477

RESUMO

Minocycline and doxycycline, two semisynthetic second-generation tetracyclines, are reported to provide neuroprotection against brain injury and glutamate-induced neurotoxicity in neuronal cultures. Doxycycline has been postulated as the potential ideal candidate for further therapeutic development as it has fewer adverse effects than minocycline. In this study, we determined whether minocycline and doxycycline could similarly protect neurons against excitotoxic insults. We treated cultured rat cortical neurons and cerebellar granule neurons (CGN) with excitotoxic concentrations of NMDA or glutamate in the presence or absence of minocycline or doxycycline. Intracellular Ca concentration ([Ca]i) was also measured using a Fluorescent Light Imaging Plate Reader (FLIPR; Molecular Devices) with the calcium sensitive dye Fluo-3 AM. We found that minocycline and tetracycline markedly protected neurons against NMDA- and glutamate-induced neuronal death. In contrast, the structurally related tetracycline, doxycycline, was ineffective at concentrations up to 100 µM. Furthermore, minocycline, but not doxycycline, also significantly attenuated NMDA- or glutamate-induced [Ca]i in both cortical neurons and CGN. Our results suggest that minocycline but not doxycycline is able to directly block NMDA- or glutamate-induced excitotoxicity in neurons most likely by inhibiting NMDA- and glutamate-induced [Ca]i. This finding may contribute to our understanding of the molecular mechanisms underlying doxycycline- and minocycline-induced neuroprotection.


Assuntos
Doxiciclina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Minociclina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , N-Metilaspartato/toxicidade , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
9.
J Trace Elem Med Biol ; 62: 126648, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980769

RESUMO

BACKGROUND: Lead (Pb) is an environmental factor has been suspected of contributing to the dementia including Alzheimer's disease (AD). Our previous studies have shown that Pb exposure at the subtoxic dose increased brain levels of beta-amyloid (Aß) and amyloid plaques, a pathological hallmark for AD, in amyloid precursor protein (APP) transgenic mice, and is hypothesized to inhibit Aß clearance in the blood- cerebrospinal fluid (CSF) barrier. However, it remains unclear how different levels of Pb affect Aß clearance in the whole blood-brain barrier system. This study was designed to investigate whether chronic exposure of Pb affected the permeability of the blood-brain barrier system by using the Dynamic Contrast-Enhanced Computerized Tomography (DCE-CT) method. METHODS: DEC-CT was used to investigate whether chronic exposure of toxic Pb affected the permeability of the real-time blood brain barrier system. RESULTS: Data showed that Pb exposure increased permeability surface area product, and also significantly induced brain perfusion. However, Pb exposure did not alter extracellular volumes or fractional blood volumes of mouse brain. CONCLUSION: Our data suggest that Pb exposure at subtoxic and toxic levels directly targets the brain vasculature and damages the blood brain barrier system.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Chumbo/toxicidade , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Camundongos , Camundongos Transgênicos
10.
J Trace Elem Med Biol ; 61: 126520, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325398

RESUMO

Formation of amyloid plaques is the hallmark of Alzheimer's disease. Our early studies show that lead (Pb) exposure in PDAPP transgenic mice increases ß-amyloid (Aß) levels in the cerebrospinal fluid (CSF) and hippocampus, leading to the formation of amyloid plaques in mouse brain. Aß in the CSF is regulated by the blood-CSF barrier (BCB) in the choroid plexus. However, the questions as to whether and how Pb exposure affected the influx and efflux of Aß in BCB remained unknown. This study was conducted to investigate whether Pb exposure altered the Aß efflux in the choroid plexus from the CSF to blood, and how Pb may affect the expression and subcellular translocation of two major Aß transporters, i.e., the receptor for advanced glycation end-products (RAGE) and the low density lipoprotein receptor protein-1 (LRP1) in the choroid plexus. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aß40 (2.5 µg/mL) was infused to rat brain via a cannulated internal carotid artery. Subchronic Pb exposure at both dose levels significantly increased Aß levels in the CSF and choroid plexus (p < 0.05) by ELISA. Confocal data showed that 4-wk Pb exposures prompted subcellular translocation of RAGE from the choroidal cytoplasm toward apical microvilli. Furthermore, it increased the RAGE expression in the choroid plexus by 34.1 % and 25.1 % over the controls (p < 0.05) in the low- and high- dose groups, respectfully. Subchronic Pb exposure did not significantly affect the expression of LRP1; yet the high-dose group showed LRP1 concentrated along the basal lamina. The data from the ventriculo-cisternal perfusion revealed a significantly decreased efflux of Aß40 from the CSF to blood via the blood-CSF barrier. Incubation of freshly dissected plexus tissues with Pb in artificial CSF supported a Pb effect on increased RAGE expression. Taken together, these data suggest that Pb accumulation in the choroid plexus after subchronic exposure reduces the clearance of Aß from the CSF to blood by the choroid plexus, which, in turn, leads to an increase of Aß in the CSF. Interaction of Pb with RAGE and LRP1 in choroidal epithelial cells may contribute to the altered Aß transport by the blood-CSF barrier in brain ventricles.

11.
Brain Res Bull ; 154: 102-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733348

RESUMO

Unconjugated bilirubin, the end product of heme catabolism and antioxidant, induced brain damage in human neonates is a well-recognized clinical syndrome. However, the cellular and molecular mechanisms underlying bilirubin neurotoxicity remain unclear. To characterize the sequence of events leading to bilirubin-induced neurotoxicity, we investigated whether bilirubin-induced glial activation was involved in bilirubin neurotoxicity by exposing co-cultured rat glial cells and cerebellar granule neurons (CGN) to bilirubin. We found that bilirubin could markedly induce the expression of TNF-α and iNOS in glial cells, and even at low concentrations, the co-culture of glial cells with neurons significantly enhances neurotoxicity of bilirubin. Pretreatment of the co-cultured cells with minocycline protected CGN from glia-mediated bilirubin neurotoxicity and inhibited overexpression of TNF-α and iNOS in glia. Furthermore, we found that high doses of bilirubin were able to induce glial injury, and minocycline attenuated bilirubin-induced glial cell death. Our data suggest that glial cells play an important role in brain damage caused by bilirubin, and minocycline blocks bilirubin-induced encephalopathy possibly by directly and indirectly inhibiting neuronal death pathways.


Assuntos
Bilirrubina/metabolismo , Minociclina/farmacologia , Neuroglia/metabolismo , Animais , Bilirrubina/toxicidade , Morte Celular/efeitos dos fármacos , Cerebelo/citologia , Minociclina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Mol Neurobiol ; 56(4): 2353-2361, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30027340

RESUMO

Our previous studies showed that intravenous immunoglobulin (IVIG) contained anti-Aß autoantibodies that might be able to treat Alzheimer's disease (AD). Recently, we identified and characterized naturally occurring autoantibodies against PrP from IVIG. Although autoantibodies in IVIG blocked PrP fibril formation and PrP neurotoxicity in vitro, it remained unknown whether IVIG could reduce amyloid plaque pathology in vivo and be used to effectively treat animals with prion diseases. In this study, we used Gerstmann-Sträussler-Scheinker (GSS)-Tg (PrP-A116V) transgenic mice to test IVIG efficacy since amyloid plaque formation played an important role in GSS pathogenesis. Here, we provided strong evidence that demonstrates how IVIG could significantly delay disease onset, elongate survival, and improve clinical phenotype in Tg (PrP-A116V) mice. Additionally, in treated animals, IVIG could markedly inhibit PrP amyloid plaque formation and attenuate neuronal apoptosis at the age of 120 days in mice. Our results indicate that IVIG may be a potential, effective therapeutic treatment for GSS and other prion diseases.


Assuntos
Doença de Gerstmann-Straussler-Scheinker/patologia , Imunoglobulinas Intravenosas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Estimativa de Kaplan-Meier , Camundongos Transgênicos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fenótipo , Placa Amiloide/patologia , Proteínas Priônicas/metabolismo
13.
Sci Rep ; 8(1): 16077, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30356054

RESUMO

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

14.
Restor Neurol Neurosci ; 36(5): 621-627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30010155

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is devastating, leading to paralysis and death. Disease onset begins pre-symptomatically through spinal motor neuron (MN) axon die-back from musculature at ∼47 days of age in the mutant superoxide dismutase 1 (mSOD1G93A) transgenic ALS mouse model. This period may be optimal to assess potential therapies. We previously demonstrated that post-symptomatic adipose-derived stem cell conditioned medium (ASC-CM) treatment is neuroprotective in mSOD1G93A mice. We hypothesized that early disease onset treatment could ameliorate neuromuscular junction (NMJ) disruption. OBJECTIVE: To determine whether pre-symptom administration of ASC-CM prevents early NMJ disconnection. METHODS: We confirmed the NMJ denervation time course in mSOD1G93A mice using co-labeling of neurofilament and post-synaptic acetylcholine receptors (AchR) by α-bungarotoxin. We determined whether ASC-CM ameliorates early NMJ loss in mSOD1G93A mice by systemically administering 200µl ASC-CM or vehicle medium daily from post-natal days 35 to 47 and quantifying intact NMJs through co-labeling of neurofilament and synaptophysin with α-bungarotoxin in gastrocnemius muscle. RESULTS: Intact NMJs were significantly decreased in 47 day old mSOD1G93A mice (p < 0.05), and daily systemic ASC-CM prevented disease-induced NMJ denervation compared to vehicle treated mice (p < 0.05). CONCLUSIONS: Our results lay the foundation for testing the long-term neurological benefits of systemic ASC-CM therapy in the mSOD1G93A mouse model of ALS.


Assuntos
Adipócitos/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Meios de Cultivo Condicionados/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células-Tronco/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Molibdoferredoxina , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Distribuição Aleatória , Receptores Colinérgicos/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
15.
J Med Invest ; 65(1.2): 64-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593196

RESUMO

Hypoxia-induced plasma levels of VEGF and sFlt-1 are responsible for increased vascular permeability occurred in both brain and pulmonary edema. Currently, it remains unclear the exact roles of VEGF and sFlt-1 in High Altitude Pulmonary Edema (HAPE) pathogenesis. In this study, plasma levels of VEGF and sFlt-1 from 10 HAPE and 10 non-HAPE subjects were measured and compared. The results showed that plasma levels of both VEGF and sFlt-1 in HAPE patients were significantly increased as compared to the non-HAPE group. Interestingly, increased plasma levels of these two protein factors were markedly reduced after treatments. As compared to VEGF, sFlt-1 was much more affected by hypoxia and treatments, suggesting this factor was a key factor contributed to HAPE pathogenesis. Importantly, the ratio of sFlt-1 and VEGF in group of either non-HAPE or HAPE after recovery was significantly lower than the ratio in HAPE patients prior to treatments. Our findings suggested that sFlt-1 was a key factor that involved in HAPE pathogenesis and the sFlt-1/VEGF ratio could be used as a sensitive diagnostic marker for HAPE. J. Med. Invest. 65:64-68, February, 2018.


Assuntos
Altitude , Edema Pulmonar/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Adulto , Biomarcadores , Humanos , Pessoa de Meia-Idade , Edema Pulmonar/etiologia
17.
Oncotarget ; 8(50): 87658-87666, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152109

RESUMO

Acute traumatic spinal cord injury (tSCI) results in a lifetime of paralysis associated with a host of medical complications. The developing secondary complications of tSCI may result in further chronic neurodegenerative diseases. Sevoflurane preconditioning (SF-PreCon) has shown guaranteed protective effects in myocardial or cerebral ischemic/reperfusion injury. However, the role of SF-PreCon in tSCI still remains to be elucidated. Here, we found that SF-PreCon ameliorated the developing secondary complications through reducing the apoptosis rate and the secretion of inflammatory cytokines in injured spinal cord tissues, and therefore enhancing the recovery after tSCI. Notably, we demonstrated that SF-PreCon ameliorates tSCI through inhibiting Cycloxygenase-2 (COX-2). Importantly, we verified that SF-PreCon inhibits the expression of COX-2 and reduces the apoptosis rate after tSCI via the induction of Caveolin-3 (Cav-3). Taken together, our results suggest that SF-PreCon ameliorates tSCI via Cav-3-dependent COX-2 inhibition and provide an economical and practical method against the secondary injury after tSCI.

18.
Am J Orthod Dentofacial Orthop ; 152(3): 348-354, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28863915

RESUMO

INTRODUCTION: The hypothesis of this study was that multiple factors are dominant in causing external apical root resorption (EARR). The objective of this investigation was to better understand the clinical factors that may lead to EARR. METHODS: Maxillary cone-beam computed tomography scans of 18 subjects who were treated with bilateral canine retractions during orthodontics were used to calculate EARR. The subjects were treated using well-calibrated segmental T-loops for delivering a 124-cN retraction force and the moment-to-force ratio suitable for moving the canine under either translation or controlled tipping. The subjects' age, sex, treatment duration, and genotype were collected. RESULTS: Six subjects of the 18 showed definite EARR, meaning that load was not the only causing factor. All 5 subjects with the genotype identified had GG genotype of IL-1ß rs11143634, indicating that people with this genotype may be at high risk. Longer treatment duration, female sex, and older age may also contribute to EARR, although the findings were not statistically significant. CONCLUSIONS: EARR appears to be related to multiple factors. The orthodontic load and the genotype should be the focuses for future studies.


Assuntos
Dente Canino , Reabsorção da Raiz/etiologia , Técnicas de Movimentação Dentária/efeitos adversos , Adolescente , Adulto , Fatores Etários , Criança , Tomografia Computadorizada de Feixe Cônico , Dente Canino/diagnóstico por imagem , Feminino , Genótipo , Humanos , Interleucina-1beta/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Reabsorção da Raiz/diagnóstico por imagem , Reabsorção da Raiz/genética , Fatores Sexuais , Adulto Jovem
19.
Sci Rep ; 7(1): 492, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28352088

RESUMO

Hypertension is one of the most important, preventable causes of premature morbidity and mortality in the developed world. Aldosterone is a major mineralocorticoid hormone that plays a key role in the regulation of blood pressure and is implicated in the pathogenesis of hypertension and heart failure. Aldosterone synthase (AS, cytochrome P450 11B2, cyp11B2) is the sole enzyme responsible for the production of aldosterone in humans. To determine the effects of increased expression of human aldosterone synthase (hAS) on blood pressure (BP), we established transgenic mice carrying the hAS gene (cyp11B2). We showed that hAS overexpression increased levels of aldosterone in hAS+/- mice. On high salt diet (HS), BPs of hAS+/- mice were significantly increased compared with WT mice. Fadrozole (an inhibitor of aldosterone synthase) treatment significantly reduced BPs of hAS+/- mice on HS. This is the first time overexpression of AS in a transgenic mouse line has shown an ability to induce HP. Specifically inhibiting AS activity in these mice is a promising therapy for reducing hypertension. This hAS transgenic mouse model is therefore an ideal animal model for hypertension therapy studies.


Assuntos
Aldosterona/metabolismo , Pressão Sanguínea/genética , Citocromo P-450 CYP11B2/genética , Cloreto de Sódio na Dieta/metabolismo , Animais , Biomarcadores , Citocromo P-450 CYP11B2/antagonistas & inibidores , Citocromo P-450 CYP11B2/metabolismo , Eletrólitos/sangue , Fadrozol/farmacologia , Expressão Gênica , Genótipo , Hematócrito , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Renina/sangue , Renina/metabolismo , Cloreto de Sódio na Dieta/sangue , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/metabolismo
20.
Brain Res Bull ; 128: 7-12, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816553

RESUMO

Adipose stromal cells conditioned media (ASC-CM) protect neurons in a variety of neuronal death models including potassium/serum deprivation-induced neuronal apoptosis. In this study, we found that ASC-CM contained glutamate oxaloacetate transaminase and its substrate, oxaloacetate (OAA) directly protected cerebellar granule neurons (CGN) from apoptosis induced by serum and potassium deprivation. Additionally, OAA inhibited serum and potassium deprivation-induced caspase 3 activation. ASC-CM and OAA in combination had a synergistic neuroprotective effect. Clearly, different from ASC-CM-induced neuroprotection, OAA-induced neuroprotection was Akt- independent but JNK-dependent. These data establish a mechanistic basis supporting that the application of ASC-CM for neuroprotective treatments could be significantly enhanced by addition of OAA.


Assuntos
Tecido Adiposo/citologia , Apoptose , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Ácido Oxaloacético/farmacologia , Células Estromais/fisiologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Cerebelo/citologia , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Humanos , MAP Quinase Quinase 4/metabolismo , Neurônios/efeitos dos fármacos , Potássio/análise , Ratos Sprague-Dawley , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...