Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; : 110090, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39048031

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, which is characterized by the accumulation and aggregation of amyloid in brain. Neuronostatin (NST) is an endogenous peptide hormone that participates in many fundamental neuronal processes. However, the metabolism and function of NST in neurons of AD mice are not known. In this study, by combining the structural analyses, primary cultures, knockout cells, and various assessments, the behavior, histopathology, brain-wide expression and cellular signaling pathways in the APP/PS1 mice were investigated. It was found that NST directly bound to GPR107, which was primarily expressed in neurons. NST modulated the neuronal survivability and neurite outgrowth induced by Aß via GPR107 in neurons. Intracerebroventricular (i.c.v.) administration of NST attenuated learning and memory abilities, reduced the synaptic protein levels of hippocampus, but improved amyloid plaques in the cortex and hippocampus of APP/PS1 mice. NST modulated glucose metabolism of hypothalamus-hippocampus-cortex axis in APP/PS1 mice and decreased ATP levels via the regulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in response to Aß, suppressed energetic metabolism, and mitochondrial function in neurons via GPR107/protein kinase A (PKA) signaling pathway. In summary, our findings suggest that NST regulates neuronal function and brain energetic metabolism in AD mice via the GPR107/PKA signaling pathway, which can be a promising target for the treatment of AD.

2.
Peptides ; 179: 171271, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002758

RESUMO

Tirzepatide (LY3298176), a GLP-1 and GIP receptor agonist, is fatty-acid-modified and 39-amino acid linear peptide, which ameliorates learning and memory impairment in diabetic rats. However, the specific molecular mechanism remains unknown. In the present study, we investigated the role of tirzepatide in the neuroprotective effects in Alzheimer's disease (AD) model mice. Tirzepatide was administrated intraperitoneal (i.p.) APP/PS1 mice for 8 weeks with at 10 nmol/kg once-weekly, it significantly decreased the levels of GLP-1R, and GFAP protein expression and amyloid plaques in the cortex, it also lowered neuronal apoptosis induced by amyloid-ß (Aß), but did not affect the anxiety and cognitive function in APP/PS1 mice. Moreover, tirzepatide reduced the blood glucose levels and increased the mRNA expression of GLP-1R, SACF1, ATF4, Glu2A, and Glu2B in the hypothalamus of APP/PS1 mice. Tirzepatide increased the mRNA expression of glucose transporter 1, hexokinase, glucose-6-phosphate dehydrogenase, and phosphofructokinase in the cortex. Lastly, tirzepatide improved the energetic metabolism by regulated reactive oxygen species production and mitochondrial membrane potential caused by Aß, thereby decreasing mitochondrial function and ATP levels in astrocytes through GLP-1R. These results provide valuable insights into the mechanism of brain glucose metabolism and mitochondrial function of tirzepatide, presenting potential strategies for AD treatment.


Assuntos
Doença de Alzheimer , Glucose , Fármacos Neuroprotetores , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Glucose/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Camundongos Transgênicos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Masculino , Peptídeos beta-Amiloides/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Fator 4 Ativador da Transcrição
3.
Nutr Cancer ; 76(6): 513-520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683105

RESUMO

This study aimed to assess the effect of individualized enteral nutrition management based on the prognostic nutrition index (PNI) on surgical patients with oral malignancies. This quasi-experimental pilot study consecutively included patients diagnosed with oral malignancies who underwent radical surgery in Ningbo No. 2 Hospital between January 2020 and May 2023. The primary outcome was PNI. A total of 71 patients with oral malignancies were enrolled, and 35 patients received PNI-based individualized enteral nutrition management. The PNI group displayed significantly higher PNI than the routine enteral nutrition support group (1st week postoperatively: 39.86 ± 3.86 vs. 37.29 ± 4.23, p < 0.001. 2nd weeks postoperatively: 44.17 ± 4.36 vs. 40.72 ± 3.40, p < 0.001). The surgical suture removal time and length of hospital stay (both p < 0.001) in the PNI group were significantly shorter than in the routine enteral nutrition support group. At 1 month postoperatively, the PNI group had significantly higher scores of QoL (p = 0.002) than the routine enteral nutrition support group. The individualized enteral nutrition management based on the PNI could improve the nutritional status of postoperative patients with oral malignancy, which could facilitate postoperative rehabilitation and improve overall QoL.


Assuntos
Nutrição Enteral , Neoplasias Bucais , Avaliação Nutricional , Estado Nutricional , Humanos , Nutrição Enteral/métodos , Projetos Piloto , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Bucais/cirurgia , Neoplasias Bucais/dietoterapia , Prognóstico , Tempo de Internação/estatística & dados numéricos , Idoso , Adulto , Qualidade de Vida
4.
Acta Pharmacol Sin ; 45(7): 1477-1491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538716

RESUMO

Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Diabetes Mellitus Experimental , Transdução de Sinais , Cicatrização , Quinases Associadas a rho , Animais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Humanos , Diabetes Mellitus Experimental/metabolismo , Masculino , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Feminino
5.
Science ; 380(6640): eadd6220, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36862765

RESUMO

Individual free fatty acids (FAs) play important roles in metabolic homeostasis, many through engagement with more than 40G protein-coupled receptors. Searching for receptors to sense beneficial omega-3 FAs of fish oil enabled the identification of GPR120, which is involved in a spectrum of metabolic diseases. Here, we report six cryo-electron microscopy structures of GPR120 in complex with FA hormones or TUG891 and Gi or Giq trimers. Aromatic residues inside the GPR120 ligand pocket were responsible for recognizing different double-bond positions of these FAs and connect ligand recognition to distinct effector coupling. We also investigated synthetic ligand selectivity and the structural basis of missense single-nucleotide polymorphisms. We reveal how GPR120 differentiates rigid double bonds and flexible single bonds. The knowledge gleaned here may facilitate rational drug design targeting to GPR120.


Assuntos
Desenho de Fármacos , Ácidos Graxos Ômega-3 , Receptores Acoplados a Proteínas G , Microscopia Crioeletrônica , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Humanos , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Conformação Proteica , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
6.
Neuropeptides ; 94: 102257, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660860

RESUMO

Neuronostatin, a bioactive peptide hormone, was encoded by pro-somatostatin and discovered using a bioinformatic method in 2008. Neuronostatin is widely expressed in the central nervous system (CNS) and peripheral tissues, it is also highly conserved among humans, rodents, and even goldfish. The 13 and 19 amino acids and the C-terminal amidation type play important roles in physiological and pathological functions. The present study reviews the roles of neuronostatin in food intake and drinking of water, as well as in the neuroendocrine processes, pain regulation, cardiovascular and circulation function, memory and studies, depression-like effect, and energy metabolism in animals. However, the information on the physiology and pathology of neuronostatin, especially the molecular mechanism, remains scarce. Considering the broad functions of neuronostatin, this endogenous neuropeptide could be a promising therapeutic target for future research and drug design if the exact receptor could be found in humans.


Assuntos
Hormônios Peptídicos , Animais , Coração
7.
Cells ; 11(11)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35681431

RESUMO

Alzheimer's disease (AD) is a common age-related neurodegenerative disease that leads to memory loss and cognitive function damage due to intracerebral neurofibrillary tangles (NFTs) and amyloid-ß (Aß) protein deposition. The phosphoinositide-dependent protein kinase (PDK1)/protein kinase B (Akt) signaling pathway plays a significant role in neuronal differentiation, synaptic plasticity, neuronal survival, and neurotransmission via the axon-dendrite axis. The phosphorylation of PDK1 and Akt rises in the brain, resulting in phosphorylation of the TNF-α-converting enzyme (TACE) at its cytoplasmic tail (the C-terminal end), changing its internalization as well as its trafficking. The current review aimed to explain the mechanisms of the PDK1/Akt/TACE signaling axis that exerts its modulatory effect on AD physiopathology. We provide an overview of the neuropathological features, genetics, Aß aggregation, Tau protein hyperphosphorylation, neuroinflammation, and aging in the AD brain. Additionally, we summarized the phosphoinositide 3-kinase (PI3K)/PDK1/Akt pathway-related features and its molecular mechanism that is dependent on TACE in the pathogenesis of AD. This study reviewed the relationship between the PDK1/Akt signaling pathway and AD, and discussed the role of PDK1/Akt in resisting neuronal toxicity by suppressing TACE expression in the cell membrane. This work also provides a perspective for developing new therapeutics targeting PDK1/Akt and TACE for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628181

RESUMO

Alzheimer's disease (AD) is associated with the accumulation and aggregation of amyloid in the brain. The cation channel TRPV2 may mediate the pathological changes in mild cognitive impairment. A high-affinity agonist of TRPV2 named cannabidiol is one of the candidate drugs for AD. However, the molecular mechanism of cannabidiol via TRPV2 in AD remains unknown. The present study investigated whether cannabidiol enhances the phagocytosis and clearance of microglial Aß via the TRPV2 channel. We used a human dataset, mouse primary neuron and microglia cultures, and AD model mice to evaluate TRPV2 expression and the ability of microglial amyloid-ß phagocytosis in vivo and in vitro. The results revealed that TRPV2 expression was reduced in the cortex and hippocampus of AD model mice and AD patients. Cannabidiol enhanced microglial amyloid-ß phagocytosis through TRPV2 activation, which increased the mRNA expression of the phagocytosis-related receptors, but knockdown of TRPV2 or Trem2 rescued the expression. TRPV2-mediated effects were also dependent on PDK1/Akt signaling, a pathway in which autophagy was indispensable. Furthermore, cannabidiol treatment successfully attenuated neuroinflammation while simultaneously improving mitochondrial function and ATP production via TRPV2 activation. Therefore, TRPV2 is proposed as a potential therapeutic target in AD, while CBD is a promising drug candidate for AD.


Assuntos
Doença de Alzheimer , Canais de Cálcio , Canabidiol , Canais de Cátion TRPV , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canabidiol/farmacologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fagocitose , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
9.
Diabetes ; 71(7): 1454-1471, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472681

RESUMO

Long-chain fatty acids (LCFAs) are not only energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ-cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets. These two LCFAs promoted insulin secretion by inhibiting somatostatin secretion and showed bias activation of GPR120 in a model system. Compared with OA, LA exerted higher potency in promoting insulin secretion, which is dependent on ß-arrestin2 function. Moreover, GPR120 signaling was impaired in the diabetic db/db model, and replenishing OA and LA improved islet function in both the db/db and streptozotocin-treated diabetic models. Consistently, the administration of LA improved glucose metabolism in db/db mice. Collectively, our results reveal that endogenous LCFA-GPR120 circuits exist and modulate homeostasis in pancreatic islets. The contributions of phenotype differences caused by different LCFA-GPR120 circuits within islets highlight the roles of fine-tuned ligand-receptor signaling networks in maintaining islet homeostasis.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Animais , Diabetes Mellitus/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
10.
Medicine (Baltimore) ; 101(51): e32399, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36595818

RESUMO

BACKGROUND: N6-methyladenosine (m6A) methylation has been reported to participate in inflammatory bowel disease (including Crohn disease [CD]). However, the prognostic and therapeutic implication of m6A methylation modification in CD is still unclear. METHODS: Genomic information of CD patients was integrated to assess disease-related m6A regulators, and difference and correlation analyses of m6A regulators were explored by using the R packages. Next, CD patients were classified by the expression of differential and intersecting genes in m6A regulators, and difference and correlation analyses were conducted among immune infiltration and therapeutic responses. Finally, colon tissue resected from patients with CD were assessed to verify expression of Wilms tumor 1-associated protein (WTAP) and METTL14 from these m6A regulators. RESULTS: We identified 23 m6A regulators in CD patients. Difference analysis of these regulators showed that expression of METTL14, WTAP, RBM15 and YTHDF2/3 was upregulated in the treatment group compared with the control group, with expression of METTL3, YTHDF1, leucine-rich pentatricopeptide repeat motif-containing protein, HNRNPA2B1, IGF2BP1 and fat mass and obesity-associated protein downregulated. Moreover, RBM15, WTAP, leucine-rich pentatricopeptide repeat motif-containing protein, YTHDF1 and YTHDF3 were considered the characteristic genes of CD in m6A regulators. In addition, we identified 4 intersection genes of 3 m6A cluster patterns. Based on the expression of these intersection genes, difference analysis among m6A regulators indicated that the expression of 8 m6A regulators had statistical differences among the 3 geneCluster patterns. Assays of colon tissues from CD patients showed that expression of WTAP and METTL14 were higher in areas of stenosis than non-stenosis. CONCLUSION: m6A methylation modification might affect disease risk, immune infiltration and therapeutic responses in CD. Evaluating the expression of m6A regulators might provide insight into the prediction of disease prognosis and therapeutic responses.


Assuntos
Doença de Crohn , Humanos , Prognóstico , Metilação , Doença de Crohn/genética , Leucina , Genes Reguladores , Metiltransferases/genética
11.
Ann Palliat Med ; 10(8): 9025-9038, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488389

RESUMO

BACKGROUND: Cisplatin has been a vital drug used for tumor treatment because of its excellent effect on numerous malignant solid cancers. Nonetheless, its nephrotoxicity is non-negligible in clinical practice. This study aims to provide a new understanding of the molecular mechanism of transient receptor potential ankyrin 1 (TRPA1) in cisplatin-induced renal apoptosis. METHODS: We evaluated the effect on apoptosis, TRPA1 expression, and intracellular calcium concentration of human kidney 2 (HK-2) cells induced by diamminedichloroplatinum (DDP). Additionally, we also assessed DDP-induced apoptosis, the expression of Bax, caspase3, cleaved-cas3, p53, Bcl-2 and intracellular calcium concentration combined with HC-030031 and/or pifithrin-α. The effect of FK506 on apoptosis of HK-2 cells induced by DDP and the expression of the nuclear factor of activated T cells (NFAT) protein treated with HC-030031, pifithrin-α, and/or FK506 were also explored. RESULTS: The results showed that apoptosis, TRPA1 expression, and intracellular calcium concentration of HK-2 cell induced by DDP were enhanced in a dose-dependent manner. HC-030031 and pifithrin-α relieved apoptosis, and intracellular calcium concentration and the expression of NFAT and phospho-NFAT (p-NFAT) were induced by DDP. HC-030031 combined with pifithrin-α further aggravated the above-mentioned tendency, including relieved apoptosis, intracellular calcium concentration, and NFAT and p-NFAT expression. HC-030031 and FK506 decelerated the apoptosis, and NFAT and p-NFAT expression of HK-2 cells was induced by DDP, while simultaneous treatment with HC-030031 and FK506 further decreased apoptosis and protein expression. However, the expression of Bcl-2 increased when HC-030031, pifithrin-α, or FK506 was used alone, and HC-030031 combined with pifithrin-α or FK506 further improved the expression of Bcl-2. CONCLUSIONS: TRPA1 mediates cisplatin-induced apoptosis in renal tubular cells via the calcineurin-nuclear factor of activated T-cells-p53 signaling pathway.


Assuntos
Apoptose , Cálcio , Cisplatino , Túbulos Renais/citologia , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo , Linhagem Celular , Cisplatino/farmacologia , Humanos
12.
PLoS One ; 16(1): e0244856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395448

RESUMO

Graphene reportedly exerts positive effects on plant root growth and development, although the corresponding molecular response mechanism remains to be elucidated. Maize seeds were randomly divided into a control and experimental group, and the roots of Zea mays L. seedlings were watered with different concentrations (0-100 mg/L) of graphene to explore the effects and molecular mechanism of graphene on the growth and development of Z. mays L. Upon evaluating root growth indices, 50 mg/L graphene remarkably increased total root length, root volume, and the number of root tips and forks of maize seedlings compared to those of the control group. We observed that the contents of nitrogen and potassium in rhizosphere soil increased following the 50 mg/L graphene treatment. Thereafter, we compared the transcriptome changes in Z. mays roots in response to the 50 mg/L graphene treatment. Transcriptional factor regulation, plant hormone signal transduction, nitrogen and potassium metabolism, as well as secondary metabolism in maize roots subjected to graphene treatment, exhibited significantly upregulated expression, all of which could be related to mechanisms underlying the response to graphene. Based on qPCR validations, we proposed several candidate genes that might have been affected with the graphene treatment of maize roots. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying graphene and maize root interaction.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Grafite/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos , Zea mays/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/crescimento & desenvolvimento
14.
Gene ; 753: 144806, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32461018

RESUMO

BACKGROUND: The aim of the present study was to detect potential gender-specific associations between some common CD36 single nucleotide polymorphisms (SNPs) and the lipid profile, as well as the susceptibility to premature multi-vessel coronary artery heart disease (CHD) in the Han population of Northern China. METHODS: A systematic three-step study process was employed to detect associations between CD36 gene variants and blood lipid profiles, as well as premature multi-vessel CHD in a gender-specific manner. RESULTS: The current study documented the following novel findings: (I) the full population-based association study in 329 Northern Han Chinese showed that four common CD36 polymorphisms were significantly related to extreme lipid profiles, with statistically significant effects based on gender interactions (rs1049673: P = 0.001; rs7755: P = 0.008; rs3211956: P = 0.034; and rs3173798: P = 0.004); (ii) these statistically significant effects could be decomposed into statistically significant atherogenic effects in males, but non-significant non-atherogenic effects in females; (iii) the results of logistic regression analysis indicated that current smoking status, low density lipoprotein cholesterol (LDL-C) levels, and type-2 diabetes were independent risk factors for premature multi-vessel CHD phenotype (P < 0.0001). CONCLUSIONS: Four common CD36 polymorphisms (rs1049673, rs7755, rs3211956, and rs3173798) were identified to be significantly associated with extreme lipid profiles and had statistically opposite gender-specific clinical lipid profile effects. Thus, the 3'-untranslated regions (3'-UTR) CD36 SNPs could be a novel target for metabolic abnormalities in males of the Han nationality from Northern China.


Assuntos
Antígenos CD36/genética , Doença da Artéria Coronariana/genética , Adulto , Povo Asiático/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Estudos de Casos e Controles , China/epidemiologia , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/patologia , Vasos Coronários/patologia , Etnicidade/genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Lipídeos/sangue , Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Caracteres Sexuais
15.
Onco Targets Ther ; 13: 3511-3523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425551

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has been considered a latent mediator of diverse biological processes in cancer. However, the mechanisms involved in high glucose-associated EMT in lung adenocarcinoma (LAD) have not been fully clarified. In this study, we aimed to investigate whether mitofusin1 (MFN1) is involved in the EMT of LAD cells induced by glucose and to identify the molecular mechanism involved in this process. MATERIALS AND METHODS: The expression of specific proteins was analysed by Western blotting, immunohistochemistry, co-immunoprecipitation and immunofluorescence analysis. The proliferation, migration and invasion of cells were assessed by Cell Counting Kit-8, bromodeoxyuridine incorporation, wound-healing and transwell assays. Lung tissues of adjacent normal regions and lung tissues from patients with LAD and LAD combined with diabetes mellitus were collected to determine the expression and significance of MFN1. RESULTS: Here, we showed that the expression of MFN1 was increased in LAD tissues compared with adjacent normal tissues and expression was even higher in lung tissues from patients with LAD combined with diabetes. In the lung cancer cell line A549, increased cell proliferation, invasion and EMT induced by high glucose were inhibited by MFN1 silencing. Mechanistic studies demonstrated that inhibiting autophagy reversed the abnormal EMT triggered by high glucose conditions. In addition, our data provide novel evidence demonstrating that PTEN-induced kinase (Pink) is a potential regulator involved in MFN1-mediated cell autophagy, which eventually leads to high glucose-induced proliferation, invasion and EMT of A549 cells. CONCLUSION: Taken together, our data show that MFN1 interacts with Pink to induce the autophagic process and that the abnormal occurrence of autophagy ultimately contributes to glucose-induced pathological EMT in LAD.

16.
Cell Discov ; 6: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32284878

RESUMO

Tissue regeneration, such as pancreatic islet tissue propagation in vitro, could serve as a promising strategy for diabetes therapy and personalised drug testing. However, such a strategy has not been realised yet. Propagation could be divided into two steps, in vitro expansion and repeated passaging. Even the first step of the in vitro islet expansion has not been achieved to date. Here, we describe a method that enables the expansion of islet clusters isolated from pregnant mice or wild-type rats by employing a combination of specific regeneration factors and chemical compounds in vitro. The expanded islet clusters expressed insulin, glucagon and somatostatin, which are markers corresponding to pancreatic ß cells, α cells and δ cells, respectively. These different types of cells grouped together, were spatially organised and functioned similarly to primary islets. Further mechanistic analysis revealed that forskolin in our recipe contributed to renewal and regeneration, whereas exendin-4 was essential for preserving islet cell identity. Our results provide a novel method for the in vitro expansion of islet clusters, which is an important step forward in developing future protocols and media used for islet tissue propagation in vitro. Such method is important for future regenerative diabetes therapies and personalised medicines using large amounts of pancreatic islets derived from the same person.

17.
Protein Cell ; 10(1): 31-42, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29948854

RESUMO

Recently we have established a new culture condition enabling the derivation of extended pluripotent stem (EPS) cells, which, compared to conventional pluripotent stem cells, possess superior developmental potential and germline competence. However, it remains unclear whether this condition permits derivation of EPS cells from mouse strains that are refractory or non-permissive to pluripotent cell establishment. Here, we show that EPS cells can be robustly generated from non-permissive NOD-scid Il2rg-/- mice through de novo derivation from blastocysts. Furthermore, these cells can also be efficiently generated by chemical reprogramming from embryonic NOD-scid Il2rg-/- fibroblasts. NOD-scid Il2rg-/- EPS cells can be expanded for more than 20 passages with genomic stability and can be genetically modified through gene targeting. Notably, these cells contribute to both embryonic and extraembryonic lineages in vivo. More importantly, they can produce chimeras and integrate into the E13.5 genital ridge. Our study demonstrates the feasibility of generating EPS cells from refractory mouse strains, which could potentially be a general strategy for deriving mouse pluripotent cells. The generation of NOD-scid Il2rg-/- EPS cell lines permits sophisticated genetic modification in NOD-scid Il2rg-/- mice, which may greatly advance the optimization of humanized mouse models for biomedical applications.


Assuntos
Blastocisto/citologia , Fibroblastos/citologia , Células-Tronco Embrionárias Murinas/citologia , Animais , Blastocisto/metabolismo , Técnicas de Cultura de Células , Fibroblastos/metabolismo , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID
18.
Protein Cell ; 10(1): 20-30, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29948855

RESUMO

One major strategy to generate genetically modified mouse models is gene targeting in mouse embryonic stem (ES) cells, which is used to produce gene-targeted mice for wide applications in biomedicine. However, a major bottleneck in this approach is that the robustness of germline transmission of gene-targeted ES cells can be significantly reduced by their genetic and epigenetic instability after long-term culturing, which impairs the efficiency and robustness of mouse model generation. Recently, we have established a new type of pluripotent cells termed extended pluripotent stem (EPS) cells, which have superior developmental potency and robust germline competence compared to conventional mouse ES cells. In this study, we demonstrate that mouse EPS cells well maintain developmental potency and genetic stability after long-term passage. Based on gene targeting in mouse EPS cells, we established a new approach to directly and rapidly generate gene-targeted mouse models through tetraploid complementation, which could be accomplished in approximately 2 months. Importantly, using this approach, we successfully constructed mouse models in which the human interleukin 3 (IL3) or interleukin 6 (IL6) gene was knocked into its corresponding locus in the mouse genome. Our study demonstrates the feasibility of using mouse EPS cells to rapidly generate mouse models by gene targeting, which have great application potential in biomedical research.


Assuntos
Marcação de Genes , Modelos Animais , Células-Tronco Embrionárias Murinas , Tetraploidia , Animais , Sistemas CRISPR-Cas , Teste de Complementação Genética , Interleucina-3/genética , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Protein Cell ; 10(2): 154-155, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30097801

RESUMO

In the original publication Fig. 1D and supplementary material is incorrect. The correct figure and supplementary material is provided in this correction.

20.
Cell ; 169(2): 243-257.e25, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388409

RESUMO

Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/citologia , Linhagem Celular , Quimera/metabolismo , Dimetideno/farmacologia , Humanos , Indicadores e Reagentes/química , Camundongos , Minociclina/química , Minociclina/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA