Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687892

RESUMO

Serratiomycin (1) is an antibacterial cyclic depsipeptide, first discovered from a Eubacterium culture in 1998. This compound was initially reported to contain l-Leu, l-Ser, l-allo-Thr, d-Phe, d-Ile, and hydroxydecanoic acid. In the present study, 1 and three new derivatives, serratiomycin D1-D3 (2-4), were isolated from a Serratia sp. strain isolated from the exoskeleton of a long-horned beetle. The planar structures of 1-4 were elucidated by using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Comparison of the NMR chemical shifts and the physicochemical data of 1 to those of previously reported serratiomycin indeed identified 1 as serratiomycin. The absolute configurations of the amino units in compounds 1-4 were determined by the advanced Marfey's method, 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate derivatization, and liquid chromatography-mass spectrometric (LC-MS) analysis. Additionally, methanolysis and the modified Mosher's method were used to determine the absolute configuration of (3R)-hydroxydecanoic acid in 1. Consequently, the revised structure of 1 was found to possess d-Leu, l-Ser, l-Thr, d-Phe, l-allo-Ile, and d-hydroxydecanoic acid. In comparison with the previously published structure of serratiomycin, l-Leu, l-allo-Thr, and d-Ile in serratiomycin were revised to d-Leu, l-Thr, and l-allo-Ile. The new members of the serratiomycin family, compounds 2 and 3, showed considerably higher antibacterial activities against Staphylococcus aureus and Salmonella enterica than compound 1.

2.
J Nat Prod ; 86(3): 612-620, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36921317

RESUMO

New sulfur-bearing natural products, sadopeptins A and B (1 and 2), were discovered from Streptomyces sp. YNK18 based on a targeted search using the characteristic isotopic signature of sulfur in mass spectrometry analysis. Compounds 1 and 2 were determined to be new cyclic heptapeptides, bearing methionine sulfoxide [Met(O)] and 3-amino-6-hydroxy-2-piperidone (Ahp), based on 1D and 2D NMR spectroscopy along with IR, UV, and MS. The configurations of sadopeptins A and B (1 and 2) were established via the analysis of the ROESY NMR correlation, oxidation, Marfey's method, and circular dichroism (CD) spectroscopy. The bioinformatics analysis of the full Streptomyces sp. YNK18 genome identified a nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster (BGC), and a putative biosynthetic pathway is proposed. Sadopeptins A and B displayed proteasome-inhibitory activity without affecting cellular autophagic flux.


Assuntos
Piperidonas , Streptomyces , Complexo de Endopeptidases do Proteassoma , Streptomyces/química , Espectroscopia de Ressonância Magnética , Piperidonas/farmacologia , Sulfóxidos/metabolismo
3.
J Am Chem Soc ; 145(3): 1886-1896, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36634356

RESUMO

The logical and effective discovery of macrolactams, structurally unique natural molecules with diverse biological activities, has been limited by a lack of targeted search methods. Herein, a targeted discovery method for natural macrolactams was devised by coupling genomic signature-based PCR screening of a bacterial DNA library with spectroscopic signature-based early identification of macrolactams. DNA library screening facilitated the efficient selection of 43 potential macrolactam-producing strains (3.6% of 1,188 strains screened). The PCR amplicons of the amine-deprotecting enzyme-coding genes were analyzed to predict the macrolactam type (α-methyl, α-alkyl, or ß-methyl) produced by the hit strains. 1H-15N HSQC-TOCSY NMR analysis of 15N-labeled culture extracts enabled macrolactam detection and structural type assignment without any purification steps. This method identified a high-titer Micromonospora strain producing salinilactam (1), a previously reported α-methyl macrolactam, and two Streptomyces strains producing new α-alkyl and ß-methyl macrolactams. Subsequent purification and spectroscopic analysis led to the structural revision of 1 and the discovery of muanlactam (2), an α-alkyl macrolactam with diene amide and tetraene chromophores, and concolactam (3), a ß-methyl macrolactam with a [16,6,6]-tricyclic skeleton. Detailed genomic analysis of the strains producing 1-3 identified putative biosynthetic gene clusters and pathways. Compound 2 displayed significant cytotoxicity against various cancer cell lines (IC50 = 1.58 µM against HCT116), whereas 3 showed inhibitory activity against Staphylococcus aureus sortase A. This genomic and spectroscopic signature-based method provides an efficient search strategy for new natural macrolactams and will be generally applicable for the discovery of nitrogen-bearing natural products.


Assuntos
Streptomyces , Estrutura Molecular , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/química , Streptomyces/metabolismo , Genômica , Reação em Cadeia da Polimerase , Família Multigênica
4.
Antimicrob Agents Chemother ; 66(12): e0120122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374087

RESUMO

Several plant-derived natural products with anti-SARS-CoV-2 activity have been evaluated for the potential to serve as chemotherapeutic agents for the treatment of COVID-19. Codonopsis lanceolata (CL) has long been used as a medicinal herb in East Asian countries to treat inflammatory diseases of the respiratory system but its antiviral activity has not been investigated so far. Here, we showed that CL extract and its active compound lancemaside A (LA) displayed potent inhibitory activity against SARS-CoV-2 infection using a pseudotyped SARS-CoV-2 entry assay system. We demonstrated that this inhibitory effect of LA was due to the alteration of membrane cholesterol and blockade of the membrane fusion between SARS-CoV-2 and host cells by filipin staining and cell-based membrane fusion assays. Our findings also showed that LA, as a membrane fusion blocker, could impede the endosomal entry pathway of SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in Vero cells with similar of IC50 values ranging from 2.23 to 3.37 µM as well as the TMPRSS2-mediated viral entry pathway in A549 cells overexpressing ACE2 and TMPRSS2 with IC50 value of 3.92 µM. We further demonstrated that LA could prevent the formation of multinucleated syncytia arising from SARS-CoV-2 spike protein-mediated membrane fusion. Altogether, the findings reported here suggested that LA could be a broad-spectrum anti-SARS-CoV-2 therapeutic agent by targeting the fusion of viral envelope with the host cell membrane.


Assuntos
COVID-19 , Codonopsis , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Células Vero , Codonopsis/metabolismo , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus
5.
Org Lett ; 24(39): 7188-7193, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36165456

RESUMO

A genomic and spectroscopic signature-based search revealed a cycloaromatized enediyne, jejucarboside A (1), from a marine actinomycete strain. The structure of 1 was determined as a new cyclopenta[a]indene glycoside bearing carbonate functionality by nuclear magnetic resonance, high-resolution mass spectrometry (MS), MS/MS, infrared spectroscopy, and a modified Mosher's method. An iterative enediyne synthase pathway has been proposed for the putative biosynthesis of 1 by genomic analysis. Jejucarboside A exhibited cytotoxicity against the HCT116 colon carcinoma cells.


Assuntos
Actinobacteria , Indenos , Actinobacteria/química , Enedi-Inos/química , Glicosídeos/química , Indenos/química , Estrutura Molecular , Espectrometria de Massas em Tandem
6.
Mar Drugs ; 20(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736203

RESUMO

Two new lipo-decapeptides, namely taeanamides A and B (1 and 2), were discovered from the Gram-positive bacterium Streptomyces sp. AMD43, which was isolated from a mudflat sample from Anmyeondo, Korea. The exact molecular masses of 1 and 2 were revealed by high-resolution mass spectrometry, and the planar structures of 1 and 2 were elucidated using NMR spectroscopy. The absolute configurations of 1 and 2 were determined using a combined analysis of 1H-1H coupling constants and ROESY correlations, the advanced Marfey's method, and bioinformatics. The putative nonribosomal peptide synthetase pathway for the taeanamides was identified by analyzing the full genome sequence data of Streptomyces sp. AMD43. We also found that taeanamide A exhibited mild anti-tuberculosis bioactivity, whereas taeanamide B showed significant bioactivity against several cancer cell lines.


Assuntos
Streptomyces , Bactérias Gram-Positivas , Estrutura Molecular , República da Coreia , Streptomyces/química
7.
Front Microbiol ; 13: 904954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633690

RESUMO

Cystargamides C and D (2 and 3) were isolated from a marine actinomycete strain collected at Beolgyo, South Korea. The planar structures of the cystargamides were elucidated by 1/2D NMR, UV, and MS spectroscopic analyses. The absolute configurations of 2 and 3 were determined based on ROESY correlations and the advanced Marfey's methods. The structures of the compounds were elucidated as new lipodepsipeptides bearing six amino acids with an epoxy fatty acid side chain. For the first time, the nonribosomal peptide synthetase biosynthetic pathway of the cystargamides has been proposed using whole genome sequence analysis. The cystargamides displayed antioxidant effect in the DPPH and ABTS assay. The discovery of new cyclic lipopeptides, cystargamides C and D, from a tidal mudflat-derived Streptomyces sp. supported that marine bacteria have potential as source of bioactive natural products.

8.
J Nat Prod ; 85(1): 83-90, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34931849

RESUMO

Single-strain cultivation of a mountain soil-derived Streptomyces sp. GA02 and its coculture with Pandoraea sp. GA02N produced two aromatic products, gwanakosides A and B (1 and 2, respectively). Their spectroscopic analysis revealed that 1 is a new dichlorinated naphthalene glycoside and 2 is a pentacyclic aromatic glycoside. The assignment of the two chlorine atoms in 1 was confirmed by the analysis of its band-selective CLIP-HSQMBC spectrum. The sugars in the gwanakosides were identified as 6-deoxy-α-l-talopyranose based on 1H-1H coupling constants, Rotating frame Overhauser enhancement spectroscopy (ROESY) NMR correlations, and chemical derivatization followed by spectroscopic and chromatographic analyses. The absolute configuration of 2, whose production was enhanced approximately 100-fold in coculture, was proposed based on a quantum mechanics-based chemical shift analysis method, DP4 calculations, and the chemically determined configuration of 6-deoxy-α-l-talopyranose. Gwanakoside A displayed inhibitory activity against pathogenic bacteria, including Staphylococcus aureus (MIC = 8 µg/mL) and Mycobacterium tuberculosis (MIC50 = 15 µg/mL), and antiproliferative activity against several human cancer cell lines (IC50 = 5.6-19.4 µM).


Assuntos
Burkholderiaceae , Streptomyces , Humanos , Burkholderiaceae/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Mycobacterium/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Teoria Quântica , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/metabolismo
9.
Org Lett ; 23(9): 3359-3363, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885319

RESUMO

Dumulmycin (1) was isolated from Streptomyces sp. DM28, a bacterial strain from a riverine sediment sample. The structure of 1 was elucidated as a bicyclic macrolide possessing 19-membered and 5-membered rings by spectroscopic analysis. The stereochemistry of 1 was determined by J-based configuration analysis, ROESY NMR data, DP4 calculations, and the modified Mosher's method. Genetic analysis identified a trans-acyltransferase polyketide biosynthetic gene cluster for 1. Dumulmycin exhibited in vitro antitubercular activity (MIC50 = 27.1 µM).


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Streptomyces/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Macrolídeos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Policetídeos/química
10.
Mar Drugs ; 19(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920625

RESUMO

Two new secondary metabolites, svalbamides A (1) and B (2), were isolated from a culture extract of Paenibacillus sp. SVB7 that was isolated from surface sediment from a core (HH17-1085) taken in the Svalbard archipelago in the Arctic Ocean. The combinational analysis of HR-MS and NMR spectroscopic data revealed the structures of 1 and 2 as being lipopeptides bearing 3-amino-2-pyrrolidinone, d-valine, and 3-hydroxy-8-methyldecanoic acid. The absolute configurations of the amino acid residues in svalbamides A and B were determined using the advanced Marfey's method, in which the hydrolysates of 1 and 2 were derivatized with l- and d- forms of 1-fluoro-2,4-dinitrophenyl-5-alanine amide (FDAA). The absolute configurations of 1 and 2 were completely assigned by deducing the stereochemistry of 3-hydroxy-8-methyldecanoic acid based on DP4 calculations. Svalbamides A and B induced quinone reductase activity in Hepa1c1c7 murine hepatoma cells, indicating that they represent chemotypes with a potential for functioning as chemopreventive agents.


Assuntos
Anticarcinógenos/farmacologia , Proteínas de Bactérias/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Lipopeptídeos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Paenibacillus/metabolismo , Animais , Anticarcinógenos/isolamento & purificação , Regiões Árticas , Proteínas de Bactérias/isolamento & purificação , Carcinoma Hepatocelular/enzimologia , Linhagem Celular Tumoral , Ecossistema , Sedimentos Geológicos/microbiologia , Humanos , Lipopeptídeos/isolamento & purificação , Neoplasias Hepáticas/enzimologia , Camundongos , Estrutura Molecular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Relação Estrutura-Atividade
11.
Front Microbiol ; 12: 626881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679647

RESUMO

Ohmyungsamycins (OMSs) A and B are cyclic depsipeptides produced by marine Streptomyces strains, which are synthesized by a non-ribosomal peptide synthetase. Notably, OMS A exhibits more potent activity against Mycobacterium tuberculosis and human cancer cells than OMS B. The substrate promiscuous adenylation (A) domain in the second module of OMS synthetase recruits either L-Val or L-Ile to synthesize OMSs A and B, respectively. Engineering of the substrate-coding residues of this A domain increased OMS A production by 1.2-fold, coupled with a drastic decrease in OMS B production. Furthermore, the culture conditions (sea salt concentration, inoculum size, and the supply of amino acids to serve as building blocks for OMS) were optimized for OMS production in the wild-type strain. Finally, cultivation of the A2-domain-engineered strain under the optimized culture conditions resulted in up to 3.8-fold increases in OMS A yields and an 8.4-fold decrease in OMS B production compared to the wild-type strain under the initial culture conditions.

12.
J Alzheimers Dis Rep ; 5(1): 7-13, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33681712

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by the aggregation of two pathological proteins, amyloid-ß (Aß) and tau, leading to neuronal and cognitive dysfunction. Clearance of either Aß or tau aggregates by immunotherapy has become a potential therapy, as these aggregates are found in the brain ahead of the symptom onset. Given that Aß and tau independently and cooperatively play critical roles in AD development, AD treatments might require therapeutic approaches to eliminate both aggregates together. OBJECTIVE: We aimed to discover a chemical drug candidate from natural sources for direct dissociation of both insoluble Aß and tau aggregates through in vitro assessments. METHODS: We isolated four borrelidin chemicals from a saltern-derived halophilic actinomycete strain of rare genus Nocardiopsis and simulated their docking interactions with Aß fibrils. Then, anti-cytotoxic, anti-Aß, and anti-tau effects of borrelidins were examined by MTT assays with HT22 hippocampal cell line, thioflavin T assays, and gel electrophoresis. RESULTS: When HT22 cells were exposed to Aß aggregates, the treatment of borrelidins alleviates the Aß-induced toxicity. These anti-cytotoxic effects can be derived from the inhibitory functions of borrelidins against the Aß aggregation as shown in thioflavin T and gel electrophoretic analyses. Among them, especially borrelidin, which exhibits the highest probability of docking, not only dissociates Aß aggregates but also directly regulates tau aggregation. CONCLUSION: Borrelidin dissociates insoluble Aß and tau aggregates together and our findings support the view that it is possible to develop an alternative chemical approach mimicking anti-Aß or anti-tau immunotherapy for clearance of both aggregates.

13.
Mar Drugs ; 20(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35049890

RESUMO

Analysis of the chemical components from the culture broth of the marine bacterium Saccharomonospora sp. CNQ-490 has yielded three novel compounds: saccharobisindole (1), neoasterric methyl ester (2), and 7-chloro-4(1H)-quinolone (3), in addition to acremonidine E (4), pinselin (5), penicitrinon A (6), and penicitrinon E (7). The chemical structures of the three novel compounds were elucidated by the interpretation of 1D, 2D nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS) data. Compound 2 generated weak inhibition activity against Bacillus subtilis KCTC2441 and Staphylococcus aureus KCTC1927 at concentrations of 32 µg/mL and 64 µg/mL, respectively, whereas compounds 1 and 3 did not have any observable effects. In addition, compound 2 displayed weak anti-quorum sensing (QS) effects against S. aureus KCTC1927 and Micrococcus luteus SCO560.


Assuntos
Actinobacteria , Antibacterianos/farmacologia , Quinolonas/farmacologia , Animais , Antibacterianos/química , Organismos Aquáticos , Bacillus subtilis/efeitos dos fármacos , Ésteres , Humanos , Testes de Sensibilidade Microbiana , Quinolonas/química
14.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967077

RESUMO

The increase in drug-resistant Mycobacterium abscessus, which has become resistant to existing standard-of-care agents, is a major concern, and new antibacterial agents are strongly needed. In this study, we introduced etamycin that showed an excellent activity against M. abscessus. We found that etamycin significantly inhibited the growth of M. abscessus wild-type strain, three subspecies, and clinical isolates in vitro and inhibited the growth of M. abscessus that resides in macrophages without cytotoxicity. Furthermore, the in vivo efficacy of etamycin in the zebrafish (Danio rerio) infection model was greater than that of clarithromycin, which is recommended as the core agent for treating M. abscessus infections. Thus, we concluded that etamycin is a potential anti-M. abscessus candidate for further development as a clinical drug candidate.


Assuntos
Doenças dos Peixes , Macrolídeos/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/crescimento & desenvolvimento , Peixe-Zebra/microbiologia , Animais , Feminino , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Camundongos
15.
Org Lett ; 22(14): 5337-5341, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32628492

RESUMO

Formicins A-C (1-3) were discovered from Streptomyces sp. associated with wood ants. The structures of 1 and 2 were elucidated as indenone thioesters bearing N-acetylcysteamine based on spectroscopic analysis. The configurations of 1-3 were determined by the analysis of ROESY correlations, the phenylglycine methyl ester method, and chemical derivatization from 3 to 2. Formicin A inhibited the growth of human triple-negative breast cancer cells by regulating the liver kinase B1-mediated AMPK signaling pathway.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Indenos/química , Indenos/farmacologia , Streptomyces/química , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Ésteres/química , Humanos , Transdução de Sinais/efeitos dos fármacos
16.
Biomolecules ; 9(11)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671649

RESUMO

The cyclic depsipeptides ohmyungsamycin (OMS) A (1) and B (2), isolated from the marine-derived Streptomyces sp. SNJ042, contain two non-proteinogenic amino acid residues, ß-hydroxy-l-phenylalanine (ß-hydroxy-l-Phe) and 4-methoxy-l-tryptophan (4-methoxy-l-Trp). Draft genome sequencing of Streptomyces sp. SNJ042 revealed the OMS biosynthetic gene cluster consisting of a nonribosomal peptide synthetase (NRPS) gene and three genes for amino acid modification. By gene inactivation and analysis of the accumulated products, we found that OhmL, encoding a P450 gene, is an l-Phe ß-hydroxylase. Furthermore, OhmK, encoding a Trp 2,3-dioxygenase homolog, and OhmJ, encoding an O-methyltransferase, are suggested to be involved in hydroxylation and O-methylation reactions, respectively, in the biosynthesis of 4-methoxy-l-Trp. In addition, the antiproliferative and antituberculosis activities of the OMS derivatives dehydroxy-OMS A (4) and demethoxy-OMS A (6) obtained from the mutant strains were evaluated in vitro. Interestingly, dehydroxy-OMS A (4) displayed significantly improved antituberculosis activity and decreased cytotoxicity compared to wild-type OMS A.


Assuntos
Antituberculosos/metabolismo , Antituberculosos/farmacologia , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/farmacologia , Deleção de Genes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/química , Streptomyces/genética , Streptomyces/metabolismo
17.
J Agric Food Chem ; 67(26): 7289-7296, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244195

RESUMO

The flower buds of Rosa rugosa Thunb. have been commonly used as a source of rose oil and as an ingredient in tea in eastern Asia, including China, Japan, and Korea. Repeated chromatography of a hot water extract from the flower buds of R. rugosa led to the isolation and characterization of three new depside glucosides, rosarugosides A-C (1-3), along with three phenolic compounds, one ionone glucoside, four flavonoids, and two tannins having known chemical structures. Linarionoside A and 2-phenylethyl-(6- O-galloyl)-ß-d-glucopyranoside were isolated from R. rugosa for the first time in this study. The structures of the new compounds 1-3 were elucidated by interpreting one- and two-dimensional nuclear magnetic resonance spectroscopic and mass spectrometric data. Among the isolates, a new depside glucoside (1) and two major phenolic glucosides (4 and 5) improved MK-801-induced sensorimotor gating deficits, which were measured via an acoustic startle response test in mice.


Assuntos
Fármacos do Sistema Nervoso Central/química , Depsídeos/química , Flores/química , Glucosídeos/química , Extratos Vegetais/química , Rosa/química , Animais , Fármacos do Sistema Nervoso Central/isolamento & purificação , Fármacos do Sistema Nervoso Central/farmacologia , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Masculino , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Filtro Sensorial/efeitos dos fármacos
18.
Arch Pharm Res ; 41(11): 1082-1091, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30264325

RESUMO

A new phenylpropanoid (1), a new alkaloid (11), and a new natural polyacetylene (17), together with nine phenolic compounds (2-10), five alkaloids (12-16), three polyacetylenes (18-20), three triterpenoidal saponins (21-23), one phenylethanoid glycoside (24), and three hexyl glycosides (25-27) with previous known structures, were isolated from the roots of Codonopsis lanceolata. All of the isolates 1-27 were evaluated for their inhibitory effects on LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages and cell viability in A2780 human ovarian cancer cells. Among the isolates, lancemasides A and B have a significant inhibitory effect on the production of NO in RAW264.7 cells (IC50 values < 50 µM). In A2780 cells, lancemaside A exhibited the most potent inhibitory effect on cell viability. This is the first report on the pharmacological activities of lancemaside B (22).


Assuntos
Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Codonopsis/química , Raízes de Plantas/química , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/antagonistas & inibidores , Células RAW 264.7 , Saponinas/farmacologia , Triterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...