Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(2): 342-350, 2021 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-33913295

RESUMO

The use of non-invasive blood glucose detection techniques can help diabetic patients to alleviate the pain of intrusive detection, reduce the cost of detection, and achieve real-time monitoring and effective control of blood glucose. Given the existing limitations of the minimally invasive or invasive blood glucose detection methods, such as low detection accuracy, high cost and complex operation, and the laser source's wavelength and cost, this paper, based on the non-invasive blood glucose detector developed by the research group, designs a non-invasive blood glucose detection method. It is founded on dual-wavelength near-infrared light diffuse reflection by using the 1 550 nm near-infrared light as measuring light to collect blood glucose information and the 1 310 nm near-infrared light as reference light to remove the effects of water molecules in the blood. Fourteen volunteers were recruited for in vivo experiments using the instrument to verify the effectiveness of the method. The results indicated that 90.27% of the measured values of non-invasive blood glucose were distributed in the region A of Clarke error grid and 9.73% in the region B of Clarke error grid, all meeting clinical requirements. It is also confirmed that the proposed non-invasive blood glucose detection method realizes relatively ideal measurement accuracy and stability.


Assuntos
Glicemia , Diabetes Mellitus , Humanos , Dinâmica não Linear
2.
Technol Health Care ; 26(S1): 229-239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710751

RESUMO

BACKGROUND: To improving the nursing level of diabetics, it is necessary to develop noninvasive blood glucose method. OBJECTIVE: In order to reduce the number of the near-infrared signal, consider the nonlinear relationship between the blood glucose concentration and near-infrared signal, and correct the individual difference and physiological glucose dynamic, 2 artificial neural networks (2ANN) combined with particle swarm optimization (PSO), named as PSO-2ANN, is proposed. METHOD: Two artificial neural networks (ANNs) are employed as the basic structure of the PSO-ANN model, and the weight coefficients of the two ANNs which represent the difference of individual and daily physiological rule are optimized by particle swarm optimization (PSO). RESULTS: Clarke error grid shows the blood glucose predictions are distributed in regions A and B, Bland-Altman analysis show that the predictions and measurements are in good agreement. CONCLUSIONS: The PSO-2ANN model is a nonlinear calibration strategy with accuracy and robustness using 1550-nm spectroscopy, which can correct the individual difference and physiological glucose dynamics.


Assuntos
Glicemia/análise , Diabetes Mellitus/sangue , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Algoritmos , Diabetes Mellitus/enfermagem , Humanos , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(5): 713-720, 2017 Aug 01.
Artigo em Chinês | MEDLINE | ID: mdl-29761957

RESUMO

Existing near-infrared non-invasive blood glucose detection modelings mostly detect multi-spectral signals with different wavelength, which is not conducive to the popularization of non-invasive glucose meter at home and does not consider the physiological glucose dynamics of individuals. In order to solve these problems, this study presented a non-invasive blood glucose detection model combining particle swarm optimization (PSO) and artificial neural network (ANN) by using the 1 550 nm near-infrared absorbance as the independent variable and the concentration of blood glucose as the dependent variable, named as PSO-2ANN. The PSO-2ANN model was based on two sub-modules of neural networks with certain structures and arguments, and was built up after optimizing the weight coefficients of the two networks by particle swarm optimization. The results of 10 volunteers were predicted by PSO-2ANN. It was indicated that the relative error of 9 volunteers was less than 20%; 98.28% of the predictions of blood glucose by PSO-2ANN were distributed in the regions A and B of Clarke error grid, which confirmed that PSO-2ANN could offer higher prediction accuracy and better robustness by comparison with ANN. Additionally, even the physiological glucose dynamics of individuals may be different due to the influence of environment, temper, mental state and so on, PSO-2ANN can correct this difference only by adjusting one argument. The PSO-2ANN model provided us a new prospect to overcome individual differences in blood glucose prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA