Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-15, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37651210

RESUMO

As China's economy and society continue to advance, there has been a notable enhancement in the quality of life for its people. However, the escalating energy consumption in buildings, particularly for heating and cooling purposes, has emerged as a pressing concern, accounting for nearly 60% of the overall energy consumption. In response to this challenge, heat pumps have emerged as a promising solution by efficiently meeting the demand for heating and cooling. Among these options, wastewater-source heat pumps (WWSHP) have garnered attention as an innovative choice, harnessing the waste heat in available wastewater resources in China to provide efficient heating and cooling services. The objective of this study was to comprehensively investigate the decarbonisation potential associated with sewage source heat pumps in China. By employing both techno-economic analysis and life cycle assessment methods, we conducted a thorough comparison between conventional heating and cooling systems and various heat pump systems. The results of our analysis demonstrate that WWSHPs not only exhibit the lowest greenhouse gas (GHG) emissions but also yield the lowest production costs. Our findings reveal that the potential capacity of WWSHPs amounted to a total of 2.4 EJ in 2020, with the capability to mitigate 99 Mt CO2-eq emissions and achieve cost savings of 24 billion RMB. Importantly, WWSHPs' maximum potential cannot be fully realised by replacing heating alone. However, by replacing both heating and cooling options, WWSHPs unlock substantial decarbonisation potential and cost savings.

2.
Pharmaceutics ; 15(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376050

RESUMO

Metal-organic frameworks (MOFs) are porous materials composed of metal ions and organic ligands. Due to their large surface area, easy modification, and good biocompatibility, MOFs are often used in bio-related fields. Fe-based metal-organic frameworks (Fe-MOFs), as important types of MOF, are favored by biomedical researchers for their advantages, such as low toxicity, good stability, high drug-loading capacity, and flexible structure. Fe-MOFs are diverse and widely used. Many new Fe-MOFs have appeared in recent years, with new modification methods and innovative design ideas, leading to the transformation of Fe-MOFs from single-mode therapy to multi-mode therapy. In this paper, the therapeutic principles, classification, characteristics, preparation methods, surface modification, and applications of Fe-MOFs in recent years are reviewed to understand the development trends and existing problems in Fe-MOFs, with the view to provide new ideas and directions for future research.

3.
Mol Pharm ; 20(2): 875-885, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36689197

RESUMO

Chlorin e6 (Ce6) has been extensively researched and developed as an antitumor therapy. Ce6 is a highly effective photosensitizer and sonosensitizer with promising future applications in photodynamic therapy, dynamic acoustic therapy, and combined acoustic and light therapy for tumors. Ce6 is also being studied for other applications in fluorescence navigation, antibacterials, and plant growth regulation. Here we review the role and research status of Ce6 in tumor therapy and the problems and challenges of its clinical application. Other biomedical effects of Ce6 are also briefly discussed. Despite the difficulties in clinical application, Ce6 has significant advantages in photodynamic therapy (PDT)/sonodynamic therapy (SDT) against cancer and offers several possibilities in clinical utility.


Assuntos
Clorofilídeos , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Linhagem Celular Tumoral
4.
Water Sci Technol ; 77(7-8): 1909-1919, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29676748

RESUMO

Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 1010 m3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.


Assuntos
Minas de Carvão , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/química , China , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA