Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(37): e2205047, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36609920

RESUMO

Artificial neuronal devices are critical building blocks of neuromorphic computing systems and currently the subject of intense research motivated by application needs from new computing technology and more realistic brain emulation. Researchers have proposed a range of device concepts that can mimic neuronal dynamics and functions. Although the switching physics and device structures of these artificial neurons are largely different, their behaviors can be described by several neuron models in a more unified manner. In this paper, the reports of artificial neuronal devices based on emerging volatile switching materials are reviewed from the perspective of the demonstrated neuron models, with a focus on the neuronal functions implemented in these devices and the exploitation of these functions for computational and sensing applications. Furthermore, the neuroscience inspirations and engineering methods to enrich the neuronal dynamics that remain to be implemented in artificial neuronal devices and networks toward realizing the full functionalities of biological neurons are discussed.


Assuntos
Redes Neurais de Computação , Sinapses , Sinapses/fisiologia , Neurônios/fisiologia , Eletrônica , Encéfalo/fisiologia
2.
Adv Mater ; 34(20): e2108506, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35285556

RESUMO

Novel 2D magnets exhibit intrinsic electrically tunable magnetism down to the monolayer limit, which has significant value for nonvolatile memory and emerging computing device applications. In these compounds, spin-phonon coupling (SPC) typically plays a crucial role in magnetic fluctuations, magnon dissipation, and ultimately establishing long-range ferromagnetic order. However, a systematic understanding of SPC in 2D magnets that combines theory and experiment is still lacking. In this work, monolayer chromium tribromide is studied to investigate SPC in 2D magnets via Raman spectroscopy and first principle calculations. The experimental Curie temperature and phonon shifts are found to be in good agreement with the numerical simulations. Specifically, it is demonstrated how magnetic exchange interactions affect phonon vibrations, which helps establish design fundamentals for 2D magnetic materials and other related devices.

3.
Nano Lett ; 21(8): 3465-3472, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33835802

RESUMO

Artificial neuronal devices that functionally resemble biological neurons are important toward realizing advanced brain emulation and for building bioinspired electronic systems. In this Communication, the stochastic behaviors of a neuronal oscillator based on the charge-density-wave (CDW) phase transition of a 1T-TaS2 thin film are reported, and the capability of this neuronal oscillator to generate spike trains with statistical features closely matching those of biological neurons is demonstrated. The stochastic behaviors of the neuronal device result from the melt-quench-induced reconfiguration of CDW domains during each oscillation cycle. Owing to the stochasticity, numerous key features of the Hodgkin-Huxley description of neurons can be realized in this compact two-terminal neuronal oscillator. A statistical analysis of the spike train generated by the artificial neuron indicates that it resembles the neurons in the superior olivary complex of a mammalian nervous system, in terms of its interspike interval distribution, the time-correlation of spiking behavior, and its response to acoustic stimuli.


Assuntos
Modelos Neurológicos , Tantálio , Potenciais de Ação , Animais , Dissulfetos , Neurônios , Processos Estocásticos
4.
Adv Mater ; 31(33): e1902118, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31237378

RESUMO

Anisotropic photonic materials with linear dichroism are crucial components in many sensing, imaging, and communication applications. Such materials play an important role as polarizers, filters, and waveplates in photonic devices and circuits. Conventional crystalline materials with optical anisotropy typically show unidirectional linear dichroism over a broad wavelength range. The linear dichroism conversion phenomenon has not been observed in crystalline materials. The investigation of the unique linear dichroism conversion phenomenon in quasi-1D hexagonal perovskite chalcogenide BaTiS3 is reported. This material shows a record level of optical anisotropy within the visible wavelength range. In contrast to conventional anisotropic optical materials, the linear dichroism polarity in BaTiS3 makes an orthogonal change at an optical wavelength corresponding to the photon energy of 1.78 eV. First-principles calculations reveal that this anomalous linear dichroism conversion behavior originates from the different selection rules of the parallel energy bands in the BaTiS3 material. Wavelength-dependent polarized Raman spectroscopy further confirms this phenomenon. Such a material, with linear dichroism conversion properties, could facilitate the sensing and control of the energy and polarization of light, and lead to novel photonic devices such as polarization-wavelength selective detectors and lasers for multispectral imaging, sensing, and optical communication applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA