Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(2): 323-337, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306997

RESUMO

Genome-wide association studies (GWASs) have uncovered susceptibility loci associated with psychiatric disorders such as bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome, and the causal mechanisms of the link between genetic variation and disease risk is unknown. Expression quantitative trait locus (eQTL) analysis of bulk tissue is a common approach used for deciphering underlying mechanisms, although this can obscure cell-type-specific signals and thus mask trait-relevant mechanisms. Although single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell-type proportions and cell-type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-seq from 1,730 samples derived from whole blood in a cohort ascertained from individuals with BP and SCZ, this study estimated cell-type proportions and their relation with disease status and medication. For each cell type, we found between 2,875 and 4,629 eGenes (genes with an associated eQTL), including 1,211 that are not found on the basis of bulk expression alone. We performed a colocalization test between cell-type eQTLs and various traits and identified hundreds of associations that occur between cell-type eQTLs and GWASs but that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on the regulation of cell-type expression loci and found examples of genes that are differentially regulated according to lithium use. Our study suggests that applying computational methods to large bulk RNA-seq datasets of non-brain tissue can identify disease-relevant, cell-type-specific biology of psychiatric disorders and psychiatric medication.


Assuntos
Estudo de Associação Genômica Ampla , Lítio , Humanos , Estudo de Associação Genômica Ampla/métodos , RNA-Seq , Locos de Características Quantitativas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
2.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37293101

RESUMO

Genome-wide association studies (GWAS) have uncovered susceptibility loci associated with psychiatric disorders like bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome with unknown causal mechanisms of the link between genetic variation and disease risk. Expression quantitative trait loci (eQTL) analysis of bulk tissue is a common approach to decipher underlying mechanisms, though this can obscure cell-type specific signals thus masking trait-relevant mechanisms. While single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell type proportions and cell type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-Seq from 1,730 samples derived from whole blood in a cohort ascertained for individuals with BP and SCZ this study estimated cell type proportions and their relation with disease status and medication. We found between 2,875 and 4,629 eGenes for each cell type, including 1,211 eGenes that are not found using bulk expression alone. We performed a colocalization test between cell type eQTLs and various traits and identified hundreds of associations between cell type eQTLs and GWAS loci that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on cell type expression regulation and found examples of genes that are differentially regulated dependent on lithium use. Our study suggests that computational methods can be applied to large bulk RNA-Seq datasets of non-brain tissue to identify disease-relevant, cell type specific biology of psychiatric disorders and psychiatric medication.

3.
HGG Adv ; 3(3): 100103, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35519825

RESUMO

Mapping genetic variants that regulate gene expression (eQTL mapping) in large-scale RNA sequencing (RNA-seq) studies is often employed to understand functional consequences of regulatory variants. However, the high cost of RNA-seq limits sample size, sequencing depth, and, therefore, discovery power in eQTL studies. In this work, we demonstrate that, given a fixed budget, eQTL discovery power can be increased by lowering the sequencing depth per sample and increasing the number of individuals sequenced in the assay. We perform RNA-seq of whole-blood tissue across 1,490 individuals at low coverage (5.9 million reads/sample) and show that the effective power is higher than that of an RNA-seq study of 570 individuals at moderate coverage (13.9 million reads/sample). Next, we leverage synthetic datasets derived from real RNA-seq data (50 million reads/sample) to explore the interplay of coverage and number individuals in eQTL studies, and show that a 10-fold reduction in coverage leads to only a 2.5-fold reduction in statistical power to identify eQTLs. Our work suggests that lowering coverage while increasing the number of individuals in RNA-seq is an effective approach to increase discovery power in eQTL studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...