Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38824120

RESUMO

Owing to the outstanding properties provided by nontrivial band topology, topological phases of matter are considered as a promising platform towards low-dissipation electronics, efficient spin-charge conversion, and topological quantum computation. Achieving ferroelectricity in topological materials enables the non-volatile control of the quantum states, which could greatly facilitate topological electronic research. However, ferroelectricity is generally incompatible with systems featuring metallicity due to the screening effect of free carriers. In this study, we report the observation of memristive switching based on the ferroelectric surface state of a topological semimetal (TaSe4)2I. We find that the surface state of (TaSe4)2I presents out-of-plane ferroelectric polarization due to surface reconstruction. With the combination of ferroelectric surface and charge-density-wave-gapped bulk states, an electric-switchable barrier height can be achieved in (TaSe4)2I-metal contact. By employing a multi-terminal-grounding design, we manage to construct a prototype ferroelectric memristor based on (TaSe4)2I with on/off ratio up to 103, endurance over 103 cycles, and good retention characteristics. The origin of the ferroelectric surface state is further investigated by first-principles calculations, which reveals an interplay between ferroelectricity and band topology. The emergence of ferroelectricity in (TaSe4)2I not only demonstrates it as a rare but essential case of ferroelectric topological materials, but also opens new routes towards the implementation of topological materials in functional electronic devices.

2.
Adv Mater ; : e2403929, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744294

RESUMO

2D polarization materials have emerged as promising candidates for meeting the demands of device miniaturization, attributed to their unique electronic configurations and transport characteristics. Although the existing inherent and sliding mechanisms are increasingly investigated in recent years, strategies for inducing 2D polarization with innovative mechanisms remain rare. This study introduces a novel 2D Janus state by modulating the puckered structure. Combining scanning probe microscopy, transmission electron microscopy, and density functional theory calculations, this work realizes force-triggered out-of-plane and in-plane dipoles with distorted smaller warping in GeSe. The Janus state is preserved after removing the external mechanical perturbation, which could be switched by modulating the sliding direction. This work offers a versatile method to break the space inversion symmetry in a 2D system to trigger polarization in the atomic scale, which may open an innovative insight into configuring novel 2D polarization materials.

3.
Sci Adv ; 10(22): eadk9928, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820158

RESUMO

The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO3-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.

4.
Nat Commun ; 15(1): 4362, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778029

RESUMO

Light-induced spin currents with the faster response is essential for the more efficient information transmission and processing. Herein, we systematically explore the effect of light illumination energy and direction on the light-induced spin currents in the W/Y3Fe5O12 heterojunction. Light-induced spin currents can be clearly categorized into two types. One is excited by the low light intensity, which mainly involves the photo-generated spin current from spin photovoltaic effect. The other is caused by the high light intensity, which is the light-thermally induced spin current and mainly excited by spin Seebeck effect. Under low light-intensity illumination, light-thermally induced temperature gradient is very small so that spin Seebeck effect can be neglected. Furthermore, the mechanism on spin photovoltaic effect is fully elucidated, where the photo-generated spin current in Y3Fe5O12 mainly originates from the process of spin precession induced by photons. These findings provide some deep insights into the origin of light-induced spin current.

5.
Mater Horiz ; 11(5): 1325-1333, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174937

RESUMO

Low-dimensional ferroelectric tunnel junctions are appealing for the realization of nanoscale nonvolatile memory devices due to their inherent advantages of device miniaturization. Those based on current mechanisms have limitations, including low tunneling electroresistance (TER) effects and complex heterostructures. Here, we introduce an entirely new TER mechanism to construct a nanotube ferroelectric tunnel junction with ferroelectric nanotubes as the tunneling region. When rolling a ferroelectric monolayer into a nanotube, due to the coexistence of its intrinsic ferroelectric polarization with the flexoelectric polarization induced by bending, a metal-insulator transition occurs depending on the radiative polarization states. For the pristine monolayer, its out-of-plane polarization is tunable by an in-plane electric field, and the conducting states of the ferroelectric nanotube can thus be tuned between metallic and insulating states via axial electric means. Using α-In2Se3 as an example, our first-principles density functional theory calculations and nonequilibrium Green's function formalism confirm the feasibility of the TER mechanism and indicate an ultrahigh TER ratio that exceeds 9.9 × 1010% of the proposed nanotube ferroelectric tunnel junctions. Our findings provide a promising approach based on simple homogeneous structures for high density ferroelectric microelectric devices with excellent ON/OFF performance.

6.
J Am Chem Soc ; 145(49): 26791-26798, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37972388

RESUMO

Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.

7.
Nano Lett ; 23(21): 10013-10020, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37856232

RESUMO

The realization of multiferroic materials offers the possibility of multifunctional electronic device design. However, the coupling between the multiferroicity and piezoelectricity in Janus materials is rarely reported. In this study, we propose a mechanism for manipulating valley physics by magnetization reversing and ferroelectric switching in multiferroic and piezoelectric material. The ferromagnetic VSiGeP4 monolayer exhibits a large valley polarization up to 100 meV, which can be effectively operated by reversing magnetization. Interestingly, the antiferromagnetic VSiGeP4 bilayers with AB and BA stacking configurations allow the coexistence of valley polarization and ferroelectricity, supporting the proposed strategy for manipulating valley physics via ferroelectric switching and interlayer sliding. In addition, the VSiGeP4 monolayer contains remarkable tunable piezoelectricity regulated by electron correlation U. This study proposes a feasible idea for regulating valley polarization and a general design idea for multifunctional devices with multiferroic and piezoelectric properties, facilitating the miniaturization and integration of nanodevices.

8.
J Phys Condens Matter ; 35(46)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37531969

RESUMO

In this review, an overview of acoustic- and radio-frequency frequency dielectric properties of multiferroic oxides, the significant dynamic response of electrical polarization to small external ac electrical fields, are present based on the reports in literatures and our recent experimental progresses. The review is begun with some basic terms, concepts and mechanisms associated with dielectric response and dielectric anomalies, namely dielectric peak and plateau upon varying temperatures and dielectric relaxations upon varying frequencies. Subsequently, a variety of quantitative analyses and descriptions of various dielectric effects, including dielectric relaxation, relaxational and transport dynamics, ac conductivity, equivalent circuit models and impedance spectroscopy, are summarized in details. Next is the kernel section. We thoroughly outline various physical mechanisms behind acoustic-/radio-frequency dielectric responses and anomalies of multiferroic oxides. Spin order transition/spin rotation, charge disorder-order transition, exchange striction of the spin interactions, spin-dependentp-dhybridization mechanism, quantum electric-dipole liquids, the interaction of spin order and quantum paraelectric, the motions of charged defects and carriers, quasi-intrinsic and extrinsic heterogeneous interfaces, polar relaxor and multiglass, ferroic domain wall/boundary motions, etc, are involved in these mechanisms. Meanwhile, particular emphasis is placed on intrinsic or extrinsic magnetodielectric effects and related mechanisms in multiferroic oxides. Finally, the review ends with a short perspective of future dielectric research in multiferroic oxides. This review is able to provide the detailed and unique insights into abundant underlying fundamental physics in multiferroic oxides as well as the potential multiferroics-based technological applications.

9.
Adv Sci (Weinh) ; 10(20): e2300413, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37116118

RESUMO

Photodetector based on two-dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power-dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2 NiS5 . While the fabricated photodetector exhibits good sensitivity (3.1 mS W-1 per □) and fast photoresponse (31 µs), the bias-, polarization-, and spatial-resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm-2 , the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two-recombination-center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions.

10.
Adv Sci (Weinh) ; 9(35): e2203863, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285684

RESUMO

In condensed matter physics, oxide materials show various intriguing physical properties. Therefore, many efforts are made in this field to develop functional oxides. Due to the excellent potential for tin-based perovskite oxides, an expansion of new related functional compounds is crucial. This work uses a heteroepitaxial approach supported by theoretical calculation to stabilize PbSnO3 thin films with different orientations. The analyses of X-ray diffraction and transmission electron microscopy unveil the structural information. A typical antiferroelectric feature with double hysteresis and butterfly loops is observed through electrical characterizations consistent with the theoretical prediction. The phase transition is monitored, and the transition temperatures are determined based on temperature-dependent structural and electrical characterizations. Furthermore, the microscopic antiferroelectric order is noticed under atomic resolution images via scanning transmission electron microscopy. This work offers a breakthrough in synthesizing epitaxial PbSnO3 thin films and comprehensively understanding its anisotropic antiferroelectric behavior.

11.
ACS Appl Mater Interfaces ; 14(32): 36825-36833, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929806

RESUMO

Ferroelectric solid solutions with composition near the morphotropic phase boundary (MPB) have gained extensive attention recently due to their excellent ferroelectric and piezoelectric properties. Here, we have demonstrated a strategy to realize the controllable preparation of BiFeO3-BaTiO3 (BF-BT) epitaxial films near the MPB. A series of high-quality BF-BT films were fabricated by pulsed laser deposition via adjusting oxygen partial pressure (PO2) using a BF-BT ceramic target. A continuous transition from rhombohedral to tetragonal phase was observed upon increasing PO2. Particularly, the film with a pure tetragonal phase exhibited a large remnant polarization of ∼90.6 µC/cm2, while excellent piezoelectric performance with an ultrahigh strain (∼0.48%) was obtained in the film with coexisting rhombohedral and tetragonal phases. The excellent ferroelectric and piezoelectric properties endow the BF-BT system near the MPB with great application prospects in lead-free electronic devices.

12.
Nano Lett ; 22(12): 4792-4799, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639474

RESUMO

HfO2-based films with high compatibility with Si and complementary metal-oxide semiconductors (CMOS) have been widely explored in recent years. In addition to ferroelectricity and antiferroelectricity, flexoelectricity, the coupling between polarization and a strain gradient, is rarely reported in HfO2-based films. Here, we demonstrate that the mechanically written out-of-plane domains are obtained in 10 nm Hf0.5Zr0.5O2 (HZO) ferroelectric film at room temperature by generating the stress gradient via the tip of an atomic force microscope. The results of scanning Kelvin force microscopy (SKPM) exclude the possibility of flexoelectric-like mechanisms and prove that charge injection could be avoided by mechanical writing and thus reveal the true polarization state, promoting wider flexoelectric applications and ultrahigh-density storage of HZO thin films.

13.
Nat Commun ; 13(1): 2565, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538081

RESUMO

Epitaxial growth is of significant importance over the past decades, given it has been the key process of modern technology for delivering high-quality thin films. For conventional heteroepitaxy, the selection of proper single crystal substrates not only facilitates the integration of different materials but also fulfills interface and strain engineering upon a wide spectrum of functionalities. Nevertheless, the lattice structure, regularity and crystalline orientation are determined once a specific substrate is chosen. Here, we reveal the growth of twisted oxide lateral homostructure with controllable in-plane conjunctions. The twisted lateral homostructures with atomically sharp interfaces can be composed of epitaxial "blocks" with different crystalline orientations, ferroic orders and phases. We further demonstrate that this approach is universal for fabricating various complex systems, in which the unconventional physical properties can be artificially manipulated. Our results establish an efficient pathway towards twisted lateral homostructures, adding additional degrees of freedom to design epitaxial films.

14.
J Phys Condens Matter ; 34(24)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35325882

RESUMO

Transition metal oxides hold a wide spectrum of fascinating properties endowed by the strong electron correlations. In 4dand 5doxides, exotic phases can be realized with the involvement of strong spin-orbit coupling (SOC), such as unconventional magnetism and topological superconductivity. Recently, topological Hall effects (THEs) and magnetic skyrmions have been uncovered in SrRuO3thin films and heterostructures, where the presence of SOC and inversion symmetry breaking at the interface are believed to play a key role. Realization of magnetic skyrmions in oxides not only offers a platform to study topological physics with correlated electrons, but also opens up new possibilities for magnetic oxides using in the low-power spintronic devices. In this review, we discuss recent observations of THE and skyrmions in the SRO film interfaced with various materials, with a focus on the electric tuning of THE. We conclude with a discussion on the directions of future research in this field.

15.
J Phys Condens Matter ; 34(20)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35193130

RESUMO

Spin-orbit coupling (SOC) plays an important role in condensed matter physics and has potential applications in spintronics devices. In this paper, we study the electronic properties of ferroelectric CuInP2S6(CIPS) monolayer through first-principles calculations. The result shows that CIPS monolayer is a potential for valleytronics material and we find that the in-plane helical and nonhelical pseudospin texture are induced by the Rashba and Dresselhaus effect, respectively. The chirality of helical pseudospin texture is coupled to the out-of-plane ferroelectric polarization. Furthermore, a large spin splitting due to the SOC effect can be found atKvalley, which can be regarded as the Zeeman effect under a valley-dependent pseudomagnetic field. The CIPS monolayer with Rashbaet aleffects provides a good platform for electrically controlled spin polarization physics.

16.
Nano Lett ; 22(4): 1580-1586, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35073104

RESUMO

Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO3 buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form. The spectroscopic measurements reveal the modified Ti-O orbital hybridization that causes the Ti ion to deviate from its nominal 4+ valency (3d0 configuration) with excess delocalized 3d electrons. Additionally, the Ti ion in TiO6 octahedron exhibits an off-center displacement. The inherent symmetry lowering in ultrathin freestanding films offers an alternative way to achieve tunable electronic structures that are of paramount importance for future technological applications.

17.
Phys Chem Chem Phys ; 23(47): 26997-27004, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842874

RESUMO

Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.

18.
Nat Commun ; 12(1): 655, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510155

RESUMO

Solid-liquid interface is a key concept of many research fields, enabling numerous physical phenomena and practical applications. For example, electrode-electrolyte interfaces with electric double layers have been widely used in energy storage and regulating physical properties of functional materials. Creating a specific interface allows emergent functionalities and effects. Here, we show the artificial control of ferroelectric-liquid interfacial structures to switch polarization states reversibly in a van der Waals layered ferroelectric CuInP2S6 (CIPS). We discover that upward and downward polarization states can be induced by spontaneous physical adsorption of dodecylbenzenesulphonate anions and N,N-diethyl-N-methyl-N-(2-methoxyethyl)-ammonium cations, respectively, at the ferroelectric-liquid interface. This distinctive approach circumvents the structural damage of CIPS caused by Cu-ion conductivity during electrical switching process. Moreover, the polarized state features super-long retention time (>1 year). The interplay between ferroelectric dipoles and adsorbed organic ions has been studied systematically by comparative experiments and first-principles calculations. Such ion adsorption-induced reversible polarization switching in a van der Waals ferroelectric enriches the functionalities of solid-liquid interfaces, offering opportunities for liquid-controlled two-dimensional ferroelectric-based devices.

19.
Adv Mater ; 33(5): e2007264, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33336516

RESUMO

Multiferroics-materials that exhibit coupled ferroic orders-are considered to be one of the most promising candidate material systems for next-generation spintronics, memory, low-power nanoelectronics and so on. To advance potential applications, approaches that lead to persistent and extremely fast functional property changes are in demand. Herein, it is revealed that the phase transition and the correlated ferroic orders in multiferroic BiFeO3 (BFO) can be modulated via illumination of single short/ultrashort light pulses. Heat transport simulations and ultrafast optical pump-probe spectroscopy reveal that the transient strain induced by light pulses plays a key role in determining the persistent final states. Having identified the diffusionless phase transformation features via scanning transmission electron microscopy, sequential laser pulse illumination is further demonstrated to perform large-area phase and domain manipulation in a deterministic way. The work contributes to all-optical and rapid nonvolatile control of multiferroicity, offering different routes while designing novel optoelectronics.

20.
RSC Adv ; 11(4): 2353-2358, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35424198

RESUMO

Here, we combine the piezoelectric wurtzite ZnO and the ferroelectric (111) BaTiO3 as a hexagonal closed-packed structure and report a systematic theoretical study on the ferroelectric behavior induced by the interface of ZnO/BaTiO3 films and the transport properties between the SrRuO3 electrodes. The parallel and antiparallel polarizations of ZnO and BaTiO3 can lead to intrinsic asymmetric ferroelectricity in the ZnO/BaTiO3 superlattice. Using first-principles calculations we demonstrate four different configurations for the ZnO/BaTiO3/ZnO superlattice with respective terminations and find one most favorable for the stable existence of asymmetric ferroelectricity in thin films with thickness less than 4 nm. Combining density functional theory calculations with non equilibrium Green's function formalism, we investigate the electron transport properties of SrRuO3/ZnO/BaTiO3/ZnO/SrRuO3 FTJ and SrRuO3/ZnO/BaTiO3/SrRuO3 FTJ, and reveal a high TER effect of 581% and 112% respectively. These findings provide an important insight into the understanding of how the interface affects the polarization in the ZnO/BaTiO3 superlattice and may suggest a controllable and unambiguous way to build ferroelectric and multiferroic tunnel junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...