Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(2): 1178-1189, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38183288

RESUMO

3-Fucosyllactose (3-FL) is an important oligosaccharide and nutrient in breast milk that can be synthesized in microbial cells by α-1,3-fucosyltransferase (α-1,3-FucT) using guanosine 5'-diphosphate (GDP)-l-fucose and lactose as substrates. However, the catalytic efficiency of known α-1,3-FucTs from various sources was limited due to their low solubility. To enhance the microbial production of 3-FL, the efficiencies of α-1,3-FucTs were evaluated and in Bacillus subtilis (B. subtilis) chassis cells that had been endowed with a heterologous synthetic pathway for GDP-l-fucose, revealing that the activity of FucTa from Helicobacter pylori (H. pylori) was higher than that of any of other reported homologues. To further improve the catalytic performance of FucTa, a rational design approach was employed, involving intracellular evaluation of the mutational sites of M32 obtained through directed evolution, analysis of the ligand binding site diversity, and protein structure simulation. Among the obtained variants, the FucTa-Y218 K variant exhibited the highest 3-FL yield, reaching 7.55 g/L in the shake flask growth experiment, which was 3.48-fold higher than that achieved by the wild-type enzyme. Subsequent fermentation optimization in a 5 L bioreactor resulted in a remarkable 3-FL production of 36.98 g/L, highlighting the great prospects of the designed enzyme and the strains for industrial applications.


Assuntos
Bacillus subtilis , Fucosiltransferases , Trissacarídeos , Humanos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Trissacarídeos/metabolismo , Fucose/metabolismo , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo
2.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960370

RESUMO

Abnormalities of navigation buoys include tilting, rusting, breaking, etc. Realizing automatic extraction and evaluation of rust on buoys is of great significance for maritime supervision. Severe rust may cause damage to the buoy itself. Therefore, a lightweight method based on machine vision is proposed for extracting and evaluating the rust of the buoy. The method integrates image segmentation and processing. Firstly, image segmentation technology is used to extract the metal part of the buoy based on an improved U-Net. Secondly, the RGB image is converted into an HSV image by preprocessing, and the transformation law of HSV channel color value is analyzed to obtain the best segmentation threshold and then the pixels of the rusted and the metal parts can be extracted. Finally, the rust ratio of the buoy is calculated to evaluate the rust level of the buoy. Results show that both the segmentation precision and recall are above 0.95, and the accuracy is nearly 1.00. Compared with the rust evaluation algorithm directly using the image processing method, the accuracy and processing speed of rust grade evaluation are greatly improved.

3.
J Environ Manage ; 345: 118806, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619384

RESUMO

Promotion of energy-saving household appliances (ESHAs) potentially contributes to optimizing both the total quantity and efficiency of household energy consumption. Differences in urban consumers' preference for higher-grade ESHAs as well as its influencing factors in cities with hierarchical socioeconomic levels remain elusive. Targeting 55 Chinese cities pertaining to three levels of socioeconomic development, we distribute questionnaires designed to cover both demographic and consciousness factors. By combining Contingent Valuation Method and multiple linear regression, the extra willingness to pay (WTP) for Grade-1/2 appliances compared with Grade-3 appliances is measured, and the influence factors on the WTP as well as consumers with highest WTP are identified. The extra WTP for Grade-1 appliances in First-, Second- and Third-level cities is 44.1%, 42.3% and 32.7%, respectively. The influences of age, household income, having children or not and monthly electricity bill parallel the socioeconomic level, while gender and schooling affect differently across socioeconomic levels. Consumers in less developed cities focus more on their affordability for the ESHAs, and in more developed cities have better environmental consciousness. Subsidies for consumers, such as those having master degree or above in First-level and Second-level cities, and having children in Third-level cities will increase their WTP. The findings provide insights for policy interventions aimed at boosting the purchase behavior for ESHAs according to local conditions for control of both household energy consumption and carbon emissions.


Assuntos
Comportamento do Consumidor , Classe Social , Cidades , Análise Multivariada , Inquéritos e Questionários , China
4.
Nat Commun ; 13(1): 7771, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522331

RESUMO

The design of adsorbents for rapid, selective extraction of ultra-trace amounts of gold from complex liquids is desirable from both an environmental and economical point of view. However, the development of such materials remains challenging. Herein, we report the fabrication of two vinylene-linked two-dimensional silver(I)-organic frameworks prepared via Knoevenagel condensation. This material enables selective sensing of gold with a low limit of detection of 60 ppb, as well as selective uptake of ultra-trace gold from complex aqueous mixtures including distilled water with 15 competing metal ions, leaching solution of electronic waste (e-waste), wastewater, and seawater. The present adsorbent delivers a gold adsorption capacity of 954 mg g-1, excellent selectivity and reusability, and can rapidly and selectively extract ultra-trace gold from seawater down to ~20 ppb (94% removal in 10 minutes). In addition, the purity of recovered gold from e-waste reaches 23.8 Karat (99.17% pure).


Assuntos
Água Potável , Poluentes Químicos da Água , Ouro , Prata , Adsorção , Poluentes Químicos da Água/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-36361457

RESUMO

The heavy pressure to improve CO2 emission control in industry requires the identification of key sub-sectors and the clarification of how they mitigate CO2 emissions through various actions. Focusing on 30 Chinese provincial regions, this study quantifies the contribution of each industrial sector to regional CO2 mitigation by combining the logarithmic mean Divisia index with attribution analysis and extract the key sectors of CO2 mitigation for each region. Results indicate that during 2010-2019, significant emission reduction was achieved through energy intensity (74%) in Beijing, while emission reductions were attained through industrial structure changes for Anhui (50%), Henan (45%), and Chongqing (45%). The contribution to emission reduction through energy structures is not significant. The production and supply of power and heat (PSPH) is a central factor in CO2 mitigation through all three inhibitive factors. Petroleum processing and coking (PPC) generally contributes to emission reduction through energy structures, while the smelting and pressing of ferrous metals (SPMF) through changes in industrial structures and energy intensity. PSPH and SPMF, in most regions, have not achieved the emission peak. Except in the case of coal mining and dressing (CMD), CO2 emissions in other key sectors have almost been decoupled from industrial development. CMD effectively promotes CO2 mitigation in Anhui, Henan, and Hunan, with larger contribution of PPC in Tianjin, Xinjiang, Heilongjiang, and that of smelting and pressing of nonferrous metals in Yunnan and Guangxi. The findings help to better identify key sectors across regions that can mitigate CO2 emissions, while analyzing the critical emission characteristics of these sectors, which can provide references to formulating region- and sector-specific CO2 mitigation measures for regions at different levels of development.


Assuntos
Condução de Veículo , Coque , Dióxido de Carbono/análise , China , Indústrias , Pequim , Coque/análise
6.
J Am Chem Soc ; 144(38): 17487-17495, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36047954

RESUMO

Two-dimensional (2D) metal-organic framework nanosheets (MONs) or membranes are classes of periodic, crystalline polymeric materials that may show unprecedented physicochemical properties due to their modular structures, high surface areas, and high aspect ratios. Yet preparing 2D MONs from multiple components and two different types of polymerization reaction remains challenging and less explored. Here, we report the synthesis of MOF films via interfacial polymerization, which involves three active monomers for simultaneous polycondensation and polycoordination taking place in a confined interface. The well-defined lamellar structure of the MOF films allowed feasible and scalable exfoliation to produce free-standing 2D MONs with high aspect ratio up to 2000:1 and ultrathin thickness (∼1.7 nm). The pore structure was revealed by high-resolution TEM images with near-atomic precision. The imide-linkage of MONs provided superior thermal (up to 530 °C) and good chemical stability in the pH range from 3 to 12. More importantly, the MONs exhibited exceptional catalytic activity and superior reusability for the hydroboration reactions of alkynes, in which the turnover frequency (TOF) reached 41734 h-1, which is 2-4 orders of magnitude greater than that reported for homogeneous and heterogeneous catalysts.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35805488

RESUMO

Peaking industrial carbon dioxide (CO2) emissions is critical for China to achieve its CO2 peaking target by 2030 since industrial sector is a major contributor to CO2 emissions. Heavy industrial regions consume plenty of fossil fuels and emit a large amount of CO2 emissions, which also have huge CO2 emissions reduction potential. It is significant to accurately forecast CO2 emission peak of industrial sector in heavy industrial regions from multi-industry and multi-energy type perspectives. This study incorporates 41 industries and 16 types of energy into the Long-Range Energy Alternatives Planning System (LEAP) model to predict the CO2 emission peak of the industrial sector in Jilin Province, a typical heavy industrial region. Four scenarios including business-as-usual scenario (BAU), energy-saving scenario (ESS), energy-saving and low-carbon scenario (ELS) and low-carbon scenario (LCS) are set for simulating the future CO2 emission trends during 2018−2050. The method of variable control is utilized to explore the degree and the direction of influencing factors of CO2 emission in four scenarios. The results indicate that the peak value of CO2 emission in the four scenarios are 165.65 million tons (Mt), 156.80 Mt, 128.16 Mt, and 114.17 Mt in 2040, 2040, 2030 and 2020, respectively. Taking ELS as an example, the larger energy-intensive industries such as ferrous metal smelting will peak CO2 emission in 2025, and low energy industries such as automobile manufacturing will continue to develop rapidly. The influence degree of the four factors is as follows: industrial added value (1.27) > industrial structure (1.19) > energy intensity of each industry (1.12) > energy consumption types of each industry (1.02). Among the four factors, industrial value added is a positive factor for CO2 emission, and the rest are inhibitory ones. The study provides a reference for developing industrial CO2 emission reduction policies from multi-industry and multi-energy type perspectives in heavy industrial regions of developing countries.


Assuntos
Dióxido de Carbono , Indústrias , Dióxido de Carbono/análise , China , Comércio , Previsões , Combustíveis Fósseis
8.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742922

RESUMO

The path of crack propagation in a graphene sheet is significant for graphene patterning via the tearing approach. In this study, we evaluate the fracture properties of pre-cracked graphene during the tearing process, with consideration of the effects of the aspect ratio, loading speed, loading direction, and ambient temperatures on the crack propagation in the monolayer sheet. Some remarkable conclusions are drawn based on the molecular dynamic simulation results, i.e., a higher loading speed may result in a complicated path of crack propagation, and the propagation of an armchair crack may be accompanied by sp carbon links at high temperatures. The reason for this is that the stronger thermal vibration reduces the load stress difference near the crack tip and, therefore, the crack tip can pass through the sp link. A crack propagates more easily along the zigzag direction than along the armchair direction. The out-of-plane tearing is more suitable than the in-plane tearing for graphene patterning. The path of crack propagation can be adjusted by changing the loading direction, e.g., a rectangular graphene ribbon can be produced by oblique tearing. This new understanding will benefit the application of graphene patterning via the tearing approach.


Assuntos
Fraturas Ósseas , Grafite , Humanos , Reprodução , Estresse Mecânico
9.
Artigo em Inglês | MEDLINE | ID: mdl-35457437

RESUMO

Climate heterogeneity has enormous impacts on CO2 emissions of the transportation sector, especially in cold regions where the demand for in-car heating and anti-skid measures leads to high energy consumption, and the penetration rate of electric vehicles is low. It entails to propose targeted emission reduction measures in cold regions for peaking CO2 emissions as soon as possible. This paper constructs an integrated long-range energy alternatives planning system (LEAP) model that incorporates multi-transportation modes and multi-energy types to predict the CO2 emission trend of the urban transportation sector in a typical cold province of China. Five scenarios are set based on distinct level emission control for simulating the future trends during 2017-2050. The results indicate that the peak value is 704.7-742.1 thousand metric tons (TMT), and the peak time is 2023-2035. Energy-saving-low-carbon scenario (ELS) is the optimal scenario with the peak value of 716.6 TMT in 2028. Energy intensity plays a dominant role in increasing CO2 emissions of the urban transportation sector. Under ELS, CO2 emissions can be reduced by 68.66%, 6.56% and 1.38% through decreasing energy intensity, increasing the proportion of public transportation and reducing the proportion of fossil fuels, respectively. Simultaneously, this study provides practical reference for other cold regions to formulate CO2 reduction roadmaps.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , China , Eletricidade , Calefação , Meios de Transporte
10.
Artigo em Inglês | MEDLINE | ID: mdl-35409653

RESUMO

How will the dual structural effects, represented by industrial structure and energy structure, affect the future correlation between economic growth and CO2 emissions? Taking Jilin Province as an example, this study explores the dynamic driving mechanism of dual structural effects on the correlation between economic growth and CO2 emissions by innovatively building an integrated simulation model from 1995 to 2015 and setting different scenarios from 2016 to 2050. Correspondingly, the concept of marginal utility and the method of variance decomposition analysis are introduced to reveal the mechanism. The results show that the energy structure is different while the industrial structure tends to be similar when CO2 emissions reach the peak under different scenarios. The slower the dual structure adjustment, the more significant the upward trend appears before the peak. The contribution of the dual structural effects to CO2 emissions caused by unit GDP growth is basically the same in peak year. With the transformation of socio-economy, the positive driving effect of the industrial structure will gradually weaken, while the negative driving effect of the energy structure will gradually increase. The methods and results presented can provide insights into sensible trade-offs of CO2 emissions and economic growth in different countries/regions during structural transitions.


Assuntos
Condução de Veículo , Desenvolvimento Econômico , Dióxido de Carbono/análise , China , Indústrias
11.
Microorganisms ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35456760

RESUMO

The effects of Lysinibacillus sp. LF-N1 and Penicillium oxalicum DH-1 inoculants (LFPO group) on compost succession and the microbial dynamic structure of co-composting wheat straw and cow manure composting were investigated. The inoculants contributed to longer thermophilic stages, higher temperatures (62.8 °C) and lower microbial diversity in the LFPO treatment compared to the control group (CK). Moreover, LFPO inoculation increased the germination index and accelerated organic matter and lignocellulose degradation in the compost. Microbial analysis confirmed that the inoculants effectively altered the microbial communities. The predominant biomarkers for bacteria and fungi in inoculated compost were members of Lysinibacillus and Penicillium, respectively. Functional prediction showed greater lignocellulose degradation and less pathogen accumulation in the LFPO group. The cooccurrence network analysis showed that the network structure in LFPO compost was greatly simplified compared to that in CK. Bacterial cluster A was dominated by Lysinibacillus, and fungal cluster B was represented by Penicillium, which were significantly correlated with temperature and lignocellulose degradation, respectively (p < 0.05). These results demonstrated that the LF-N1 and DH-1 inoculants drove the bacterial and fungal assemblies to induce physicochemical property changes during cocomposting.

12.
Chin J Nat Med ; 20(2): 133-138, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35279240

RESUMO

Pueraria thomsonii has long been used in traditional Chinese medicine. Isoflavonoids are the principle pharmacologically active components, which are primarily observed as glycosyl-conjugates and accumulate in P. thomsonii roots. However, the molecular mechanisms underlying the glycosylation processes in (iso)flavonoid biosynthesis have not been thoroughly elucidated. In the current study, an O-glucosyltransferase (PtUGT8) was identified in the medicinal plant P. thomsonii from RNA-seq database. Biochemical assays of the recombinant PtUGT8 showed that it was able to glycosylate chalcone (isoliquiritigenin) at the 4-OH position and glycosylate isoflavones (daidzein, formononetin, and genistein) at the 7-OH or 4'-OH position, exhibiting no enzyme activity to flavonones (liquiritigenin and narigenin) in vitro. The identification of PtUGT8 may provide a useful enzyme catalyst for efficient biotransformation of isoflavones and other natural products for food or pharmacological applications.


Assuntos
Isoflavonas , Pueraria , Clonagem Molecular , Genisteína , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoflavonas/farmacologia , Pueraria/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-35206308

RESUMO

The CO2 emission-mitigation policies adopted in different Chinese cities are important for achieving national emission-mitigation targets. China faces enormous inequalities in terms of regional economic development and urbanization, with some cities growing rapidly, while others are shrinking. This study selects 280 cities in China and divides them into two groups of growing cities and two groups of shrinking cities. This is achieved using an index called "urban development degree," which is calculated based on economic, demographic, social, and land-use indicators. Then, the 280 cities' CO2 emission characteristics are examined, and extended STIRPAT (stochastic impacts by regression on population, affluence, and technology) is used to verify the influencing factors. We find that rapidly growing cities (RGCs) present a trend of fluctuating growth in CO2 emissions, rapidly shrinking cities (RSCs) show an inverted U-shaped trend, and slightly growing (SGCs) and slightly shrinking cities (SSCs) show a trend of rising first, followed by steady development. Moreover, for growing cities, the population, economy, and proportion of tertiary industry have positive effects on carbon emissions, while technology has negative effects. For shrinking cities, the population and economy have significant positive effects on carbon emissions, while technology and the proportion of tertiary industry have negative effects.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , China , Cidades , Desenvolvimento Econômico , Urbanização
14.
Nat Food ; 3(12): 1052-1064, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37118306

RESUMO

Agricultural bioenergy utilization relies on crop and livestock production, favouring an integrated crop-livestock-bioenergy production model. Yet the integrated system's exact contribution to mitigating various environmental burdens from the crop production system and livestock production system remains unclear. Here we inventory the environmental impacts of each process in three subsystems at both national and regional scales in China, ultimately identifying key processes and impact categories. The co-benefits and trade-offs in nine impact categories are investigated by comparing the life cycle impacts in the background scenario (crop production system + livestock production system) and foreground scenario (integrated system). Freshwater eutrophication is the most serious impact category in both scenarios. Except terrestrial acidification, the mitigation effects on the other eight impact categories vary from 1.8% to 94.8%, attributed to fossil energy and chemical fertilizer offsets. Environmental trade-offs should be deliberated when expanding bioenergy utilization in the identified critical regions.

15.
J Am Chem Soc ; 143(46): 19446-19453, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34731564

RESUMO

Development of new porous materials as hosts to suppress the dissolution and shuttle of lithium polysulfides is beneficial for constructing highly efficient lithium-sulfur batteries (LSBs). Although 2D covalent organic frameworks (COFs) as host materials exhibit promising potential for LSBs, their performance is still not satisfactory. Herein, we develop polyimide COFs (PI-COF) with a well-defined lamellar structure, which can be exfoliated into ultrathin (∼1.2 nm) 2D polyimide nanosheets (PI-CONs) with a large size (∼6 µm) and large quantity (40 mg/batch). Explored as new sulfur host materials for LSBs, PI-COF and PI-CONs deliver high capacities (1330 and 1205 mA h g-1 at 0.1 C, respectively), excellent rate capabilities (620 and 503 mA h g-1 at 4 C, respectively), and superior cycling stability (96% capacity retention at 0.2 C for PI-CONs) by virtue of the synergy of robust conjugated porous frameworks and strong oxygen-lithium interactions, surpassing the vast majority of organic/polymeric lithium-sulfur battery cathodes ever reported. Our finding demonstrates that ultrathin 2D COF nanosheets with carbonyl groups could be promising host materials for LSBs with excellent electrochemical performance.

16.
Exp Gerontol ; 152: 111453, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144190

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is a cardiovascular disease with high morbidity and mortality, and microRNA-139-5p (miR-139-5p) has been reported to be closely related with myocardial viability. This study aimed to investigate the effects of miR-139-5p on vascular endothelial cells, detect miR-139-5p expression in AMI patients and evaluate its diagnostic value. METHODS: A dual-luciferase reporter assay was utilized to confirm the interaction of miR-139-5p with vascular endothelial growth factor receptor-1 (VEGFR-1). Quantitative real-time PCR was used to detect the levels of miR-139-5p and VEGFR-1 in serum and cells. The viability of human umbilical vein endothelial cells (HUVECs) was measured using a cell counting kit-8 assay. The correlation between miR-139-5p and VEGFR-1 was analyzed by Pearson correlation analysis. The diagnostic value of miR-139-5p, cardiac troponin I (cTnI) and creatine kinase isoenzymes (CK-MB) was identified by receiver operating characteristic analysis. RESULTS: miR-139-5p suppressed cell viability by directly targeting VEGFR-1 in HUVECs. Increased miR-139-5p and decreased VEGFR-1 levels were found in AMI patients and hypoxia-treated HUVECs, and miR-139-5p and VEGFR-1 were shown to be negatively correlated. The diagnostic value of miR-139-5p for AMI screening was high, and the combination of cTnI, CK-MB and miR-139-5p had the highest diagnostic accuracy. miR-139-5p inhibited cell viability by inhibiting VEGFR-1 in hypoxia-treated HUVECs. CONCLUSION: miR-139-5p inhibits endothelial cell viability of AMI by inhibiting VEGFR-1, and increased miR-139-5p expression in AMI patients has high diagnostic value for AMI screening, indicating that miR-139-5p may serve as a diagnostic biomarker and molecular therapeutic target for AMI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Biomarcadores , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Fator A de Crescimento do Endotélio Vascular
17.
J Ind Microbiol Biotechnol ; 48(5-6)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33734388

RESUMO

Catalases are a large group of enzymes that decompose hydrogen peroxide to oxygen and hydrogen, and have been applied widely in numerous areas. Bacillus subtilis ATCC 6051a is a well-known host strain for high level secretion of heterologous peptides. However, the application of 6051a was seriously hampered by insufficient transformation efficiency. In this study, D-xylose inducible comK was integrated into the genome of B. subtilis ATCC 6051a, generating 164S, a mutant owns a transformation efficiency of 1 000-fold higher than its parent strain, thus allowing gene replacement by double crossover recombination using linear dsDNAs. The efficiency of the flanking arms for homologous recombination was then analyzed. We found that 400 bp was the minimal length of homologous fragments required to initiate efficient recombination in the 164S strain. In addition, DNA cassettes encoding two mesophilic catalases (Orf 2-62 and Orf 2-63) from B. licheniformis were integrated onto 164S. The catalytic properties of recombinant Orf 2-62 and Orf 2-63 were analyzed, and were found to be predominantly secreted into the fermentation broth, although they obviously lack any known secretory signal peptide. This work demonstrated that B. subtilis 164S is an excellent cell tool, not only for its superior secretion capacity, but also for its convenience in genetic modification.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Catalase/biossíntese , Bacillus licheniformis/genética , Proteínas de Bactérias/genética , Fermentação , Engenharia Genética , Genoma Bacteriano , Recombinação Homóloga , Microbiologia Industrial , Proteínas Recombinantes/biossíntese , Fatores de Transcrição/genética , Transformação Bacteriana , Xilose/metabolismo
18.
Enzyme Microb Technol ; 144: 109726, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33541569

RESUMO

α-l-arabinofuranosidases (EC 3.2.1.55; AFs) cause the release of arabinosyl residues from hemicellulose polymers such as xylans, and are receiving increased levels of research attention as they could be applied in a range of processes that involve the enzymatic degradation of xylans. The secretory production of bacterial AFs has not been attempted previously. In this study, we designed a unique induction system for the production of a recombinant AF in Bacillus subtilis in order to exploit its enzymic degradation of wheat bran. We found that non-starch phytochemicals were more efficient than d-xylose when inducing the expression of T7 RNA polymerase and driving the transcription of AF by the T7 promoter. The host cell, B. subtilis (ATCC 6051a-derived strain 164T7P) was engineered to incorporate a DNA cassette that expressed T7 RNA polymerase under the control of a d-xylose inducible promoter (PxylA). The T7 promoter engineered into 164T7P was initially tested and compared with P43 in terms of GFP expression; we found that the expression level of GFP by the T7 promoter was ten-fold higher than that achieved by P43. When cultured in a flask with gentle shaking, and with d-xylose as an inducer, the recombinant strain successfully expressed arbf, a family 51 (GH 51) glycoside hydrolase from Bacillus licheniformis, and secreted 141.4 ±â€¯4.8 U/mL of enzyme, with a Km of 1.4 ±â€¯0.1 mM and a kcat of 139.4 s-1. However, the protein was devoid of a secretary signal peptide. When cultures were supplemented with wheat bran, the maximal yield of the secreted AF reached 194.8 ±â€¯4.1 U/mL. The results provide a foundation for the high level production of heterologous proteins using wheat bran as the inducer in B. subtilis.


Assuntos
Bacillus subtilis , Fibras na Dieta , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Xilose
19.
Zhongguo Zhong Yao Za Zhi ; 44(17): 3615-3621, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31602931

RESUMO

The type and frequency of simple sequence repeats( SSRs) in the genomes was investigated using the DNA sequence data of Pueraria lobata and P. thomsonii. Based on these SSRs,20 pairs of SSR primers were designed and 5 high polymorphism primer pairs were selected to analyze genetic diversity of 9 cultivars of P. thomsonii in Jiangxi province. The results showed that the 5 pairs of primers could generate 16 polymorphic alleles bands. The average polymorphism information content( PIC) of each SSR primer pair was 0. 600 7.According to the genetic similarity coefficients,the 9 cultivars of P. thomsonii can be classified into 6 germplasms. This study established DNA identity cards with 5 pairs of SSR primers for different germplasm resources of P. thomsonii in Jiangxi province,which provided reference information for the selection of fine germplasms of P. thomsonii and the theoretical basis for the study of Dao-di herbs.


Assuntos
DNA de Plantas/genética , Repetições de Microssatélites , Pueraria/genética , China , Genômica , Polimorfismo Genético
20.
ACS Nano ; 13(2): 2473-2480, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30747523

RESUMO

The efficient synthesis of crystalline two-dimensional polymers (2DPs) with designed structures and properties is highly desired but remains a considerable challenge. Herein, we report the synthesis of two-dimensional polyimide (2DPI) nanosheets via hydrogen-bond-induced preorganization and subsequent imidization reaction. The formed intermolecular hydrogen bonds can significantly improve the internal order and in-plane periodicity of 2DPI. The crystalline few-layer 2DPI nanosheets are micrometer-size, solvent dispersible, and thermally stable. Interestingly, the 2DPI with π-conjugation shows a favorable bandgap of 2.2 eV and can function as a p-type semiconducting layer in field-effect transistor devices with an appreciable mobility of 4.3 × 10-3 cm2 V-1 s-1. Furthermore, when explored as a polymeric anode for sodium-ion batteries, the 2DPI exhibits ultrahigh capacity (312 mAh g-1 at 0.1 A g-1), impressive rate capability (137 mAh g-1 at 10.0 A g-1), and excellent cycling stability (95% capacity retention after 1100 cycles) due to its robust 2D conjugated porous structure, outperforming most organic/polymeric anodes ever reported. This work provides a versatile strategy for synthesizing 2DP nanosheets with promising electronics and energy-related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...